
Location-Aware Publish/Subscribe

Guoliang Li†, Yang Wang‡, Ting Wang†, Jianhua Feng†

†Department of Computer Science, Tsinghua University, Beijing, China
‡National Computer Network Emergency Response Technical Team, Coordination Center of China

{liguoliang,fengjh}@tsinghua.edu.cn, aaron@ncic.ac.cn, wangting421@gmail.com

ABSTRACT

Location-based services have become widely available on
mobile devices. Existing methods employ a pull model or
user-initiated model, where a user issues a query to a serv-
er which replies with location-aware answers. To provide
users with instant replies, a push model or server-initiated
model is becoming an inevitable computing model in the
next-generation location-based services. In the push mod-
el, subscribers register spatio-textual subscriptions to cap-
ture their interests, and publishers post spatio-textual mes-
sages. This calls for a high-performance location-aware pub-
lish/subscribe system to deliver publishers’ messages to rel-
evant subscribers.

In this paper, we address the research challenges that arise
in designing a location-aware publish/subscribe system. We
propose an R-tree based index structure by integrating tex-
tual descriptions into R-tree nodes. We devise efficient fil-
tering algorithms and develop effective pruning techniques
to improve filtering efficiency. Experimental results show
that our method achieves high performance. For example,
our method can filter 500 tweets in a second for 10 million
registered subscriptions on a commodity computer.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases

Keywords

Location-aware Publish/Subscribe, Filtering Algorithm

1. INTRODUCTION
Location-based services (LBS), thanks to global position-

ing systems (GPS) wired into smart phones, have recently
attracted significant attention from both industrial and aca-
demic communities. Many LBS services such as Foursquare
(http://foursquare.com) have been widely accepted since they
can provide users with location-aware experiences.

Existing LBS systems employ a pull model or user-initiated
model [13, 7], where a user issues a query to a server which
responds with location-aware answers. For example, if a mo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

bile user wants to find a seafood restaurant nearby, she can
issue a query with keywords “seafood restaurant” to an
LBS system, which returns relevant answers based on the
user’s location and keywords.

To provide users with instant replies, a push model or
server-initiated model is becoming an inevitable comput-
ing model in next-generation location-based services. In the
push model, subscribers register spatio-textual subscriptions
to capture their interests, and publishers post spatio-textual
messages. This calls for a high-performance location-aware
publish/subscribe system to deliver messages to relevant
subscribers. This new computing model brings new user
experiences to mobile users, and can help users retrieve in-
formation without explicitly issuing a query.

There are many real-world applications using location-
aware publish/subscribe services. The first one is Groupon.
In a Groupon system, subscribers are Groupon customers
and messages are Groupon messages. Groupon customer-
s register their interests with locations and keywords (e.g.,
“iphone4s” at New York). For each Groupon message (e.g.,
“iphone4s AT&T package”at Manhattan), the system provider
sends the message to the customers who may be potentially
interested in the message by evaluating the spatial proximi-
ty and textual relevancy between subscriptions and the mes-
sage. The second one is location-aware AdSense, which ex-
tends traditional AdSense (http://www.google.com/adsense)
to support location-aware services, where the subscribers are
advertisers and the publishers are mobile users. The ad-
vertisers register their location-based advertisements (e.g.,
“seafood” at Manhattan) in the system. The system push-
es relevant advertisements to mobile users based on their
locations and contents they are browsing (e.g., webpages).
The third one is tweet delivery. Market analysts want to
receive feedback of their products in a specific area from
Twitter. In this case, the subscribers are market analyst-
s and the messages are tweets. Market analysts register
their interests (e.g., “ipad2” at LA). For each tweet (e.g.,
“ipad2 is expensive” at LA Airport), the system pushes the
tweet to relevant analysts whose spatio-textual subscriptions
match the tweet.

One big challenge in a publish/subscribe system is the
high performance. A publish/subscribe system should sup-
port tens of millions of subscribers and deliver messages
to relevant subscribers in milliseconds. Since messages and
subscriptions contain both location information and textual
description, it is rather costly to deliver messages to relevant
subscribers. This calls for an efficient filtering technique to
support location-aware publish/subscribe services.

802

To address the challenge, we propose a token-based R-tree
index structure (called Rt-tree) by integrating each R-tree
node with a set of tokens selected from subscriptions. Using
the Rt-tree, we develop a filter-and-verification framework to
efficiently deliver a message. To reduce the number of token-
s associated with Rt-tree nodes, we select some high-quality
representative tokens from subscriptions and associate them
with Rt-tree nodes. This technique not only reduces index
sizes but also improves the performance. We propose effi-
cient filtering algorithms and develop pruning techniques to
achieve high performance. Experiments on large, real data
sets show that our method achieves high performance.

To summarize, we make the following contributions. (1)
We introduce a new computing model for LBS and formal-
ize the location-aware publish/subscribe problem. (2) We
propose a novel index structure, the Rt-tree, by integrating
high-quality representative tokens selected from subscrip-
tions into the R-tree nodes. (3) Using our proposed indexes,
we develop efficient filtering algorithms and develop several
effective pruning techniques to improve the efficiency.

The rest of this paper is organized as follows. We for-
malize the problem in Section 2. In Section 3, we propose
the Rt-tree index. We propose a representative token based
method in Section 4. We devise an efficient filtering algorith-
m without a verification step in Section 5. Experiments are
provided in Section 6. We review related works in Section 7
and conclude the paper in Section 8.

2. PRELIMINARIES

2.1 Problem Formulation
In a location-aware publish/subscribe system, subscribers

register subscriptions to capture their interests. A subscrip-
tion s includes a textual description s.T and spatial informa-
tion s.R, denoted by s = (T,R). The spatial information is
used to capture a subscriber’s most interested region. In this
paper we use the well-known minimum bounding rectangle
(MBR) to denote a region s.R. The textual description is
used to capture a subscriber’s content-based interests, de-
noted by a set of tokens s.T = {t1, t2, · · · , t|s.T |}.

A message m posted by a publisher also contains a textual
description m.T and spatial information m.R, denoted by
m = (T, R), which respectively have the same meaning as
those of subscriptions. Note that the spatial information
m.R of a message can be a point, e.g., mobile user’s location.
If the spatial information of a message is a point, we call it
point message; otherwise we call it range message.

Let S = {s1, s2, · · · , s|S|} denote the set of all subscrip-
tions. Given a subscription si ∈ S and a message m, a
location-aware publish/subscribe system delivers the mes-
sage m to si (si is called an answer of m), if they satisfy

(1) Spatial Constraint: Message m and subscription si
have spatial overlap (i.e., si.R ∩m.R 6= φ) and;

(2) Textual Constraint: All tokens in subscription si are
contained in message m (i.e., si.T ⊆ m.T).

In this paper, for textual constraint we consider the con-
junctive semantics, that is any token in a subscription needs
to be contained in the message. Our method can also sup-
port disjunctive semantics by decomposing a subscription
into several small subscriptions. For example, we can de-
compose a subscription with tokens “(iphone4s or ipad2)
and AT&T” to two subscriptions with tokens “iphone4s and
AT&T” and “ipad2 and AT&T”. For the spatial constrain-

R2

R3

R1
R6

R4

R5

R7

R9

R8

R11

R10

R12

19

18

13 14

17

15 16

Rm

s1 {32GB, AT&T, iphone4s}; R1

s2 {verizon, ipad2, iphone4s}; R2

s3 {64GB, AT&T, ipad2}; R3

s4 {verizon, iphone4s}; R4

s5 {verizon, iphone4s}; R5

s6 {verizon, iphone4s}; R6

s7 {AT&T, ipad2}; R7

s8 {AT&T, ipad2, iphone4s}; R8

s9 {32GB, iphone4s}; R9

s10 {32GB, AT&T, iphone4s}; R10

s11 {ipad2, iphone4s}; R11

s12 {64GB, ipad2}; R12

Subscriptions
Range message mr : {iphone4s,ipad2,AT&T,64GB};Rm

Point message mp : {iphone4s,ipad2,AT&T,64GB};Pm

Pm

Figure 1: An example of subscriptions and messages
t, we consider the case that a message and a subscription
have spatial overlap. In the future work, we want to study
(1) range queries (e.g., price between 100 and 200); and
(2) ranking queries: finding the subscriptions with similar-
ity to the message larger than a given threshold (or top-k
subscriptions), by considering both textual relevancy and s-
patial proximity. Based on these notations, we formalize the
location-aware publish/subscribe problem as below.

Definition 1 (Location-aware Publish/Subscribe).
Given a set of subscriptions S = {s1, s2, · · · , s|S|} and a
message m, a location-aware publish/subscribe system deliv-
ers m to si ∈ S if si.R ∩m.R 6= φ and si.T ⊆ m.T .

Example 1. Consider the 12 subscriptions and 2 mes-
sages in Figure 1. For point message mp = ({iphone4s,
ipad2, AT&T, 64GB}, Pm), subscription s12 = ({64GB, ipad2},
R12) is an answer. s10 = ({32GB, AT&T, iphone4s}, R10) is
not an answer as it has a token “32GB” which does not ap-
pear in mp. s7 = ({AT&T, ipad2}, R7) is not an answer as
it has no spatial overlap with mp. The answers of mp are
s11 and s12. For a range message mr = ({iphone4s, ipad2,
AT&T, 64GB}, Rm), its answers are s8, s11, and s12.

2.2 Straightforward Methods
Keyword-first method: It first uses existing content-based
publish/subscribe techniques to generate the candidates that
satisfy the textual constraint, e.g, using inverted lists [25].
Then it verifies the candidates to check whether they satis-
fy the spatial constraint. Obviously this method generates
large numbers of candidates and leads to low performance.

Spatial-first method: Different from the keyword-first method,
it first generates the location-based candidates that satisfy
the spatial constraint, using existing methods, e.g., segment
tree or R-tree [22]. Then it filters candidates which do not
satisfy the textual constraint. This method also generates
huge numbers of candidates and has poor performance.

Spatial keyword search based method: There are several
studies on spatial keyword search by using a pull model [30,
13, 7, 3]. In this model, the underlying data are a set of ob-
jects with locations and keywords. A user submits a spatial
keyword query, and the system returns top-k relevant ob-
jects by considering spatial and textual proximity between
the query and objects. They incorporate keywords (e.g., sig-
nature files [13] or inverted lists [7]) into R-tree nodes. We
can extend these approaches to support our application by
traversing tree based indexes and pruning tree nodes using
textual and spatial information. Experimental results (Sec-
tion 6) show that our method outperforms these approaches.

803

3. R
t
-tree BASED METHOD

We first propose an index structure in Section 3.1 and
then devise efficient algorithms in Section 3.2.

3.1 R
t
-tree Index Structure

R-tree is a well-known index structure to index spatial
data, which is a balanced search tree where all leaf nodes
are at the same level. As the standard R-tree has no textual
pruning power, we propose a token-based R-tree, called Rt-
tree, by integrating tokens of subscriptions into R-tree nodes.

Like R-tree, Rt-tree is also a balanced search tree. Each
leaf node contains between b and B data entries, where each
entry is a subscription. Each internal node has between b

and B node entries. Each entry is a triple 〈Child, MBR, To-
kenSet〉, where Child is a pointer to its child node, MBR is
the minimum bounding rectangle of all entries within this
child, and TokenSet is a set of tokens selected from subscrip-
tions (or a pointer to the token set). A leaf node’s token set
is the union of tokens of all subscriptions within this node
and an internal node’s token set is the union of token sets
of all entries within this node. As an entry corresponds to
a node, for simplicity a node is mentioned interchangeably
with its corresponding entry if the context is clear.

Example 2. Figure 2 shows an Rt-tree for the subscrip-
tions in Figure 1. Nodes n4, n5, n6, n7 are leaf nodes. Each
leaf node contains three subscriptions. For instance, n4

contains three subscriptions s1, s2, s3. Node n2 has two
entries (n4, R13, {iphone4s, ipad2, AT&T, verizon, 32GB,
64GB}) and (n5, R14, {iphone4s, verizon}). The first entry
points to its child n4 with MBR R13 and the token set is
the union of the subscriptions of entries in its children, i.e.,
s1.T ∪ s2.T ∪ s3.T . The second entry points to its child n5

with MBR R14 and the token set is s4.T ∪ s5.T ∪ s6.T .

Suppose the height of the Rt-tree is H and the average
number of tokens in subscriptions is Savg. Each token of a
subscription is stored at most H times1. Thus the token-
set complexity is O(H × Savg × |S|). There are at most
|S|
b
+ |S|

b2
+· · ·+ |S|

bH
=|S|×

1
b
− 1

bH+1

1− 1
b

≈ 1

b−1
×|S| nodes (Suppose

the root also has b child nodes). The space complexity of
a node is O(B) for storing MBRs and child pointers. Thus
the overall space complexity is

O
(B

b− 1
× |S|+H× Savg × |S|

)

.

3.2 Filtering Algorithms
We discuss how to use the Rt-tree to filter a message.

We want to prune unnecessary nodes and only visit a small
number of “pivotal” nodes, where a node is a pivotal node
if there exist answers in its leaf descendants. Thus when
traversing the Rt-tree, we only need to visit the pivotal nodes.
However an Rt-tree node may have large numbers of leaf
descendants and it is expensive to check whether a node
is a pivotal node. Based on this observation, we propose a
filter-and-verification framework. In the filter step, we find a
set of candidate nodes which is a superset of pivotal nodes.
In the verification step we verify the subscriptions in the
leaf candidate nodes generated in the filter step. Next we
introduce two filters.

1
In this paper, we suppose the entries in the same internal node have

no overlap, e.g., R+-tree.

Filters: Given a node n, let n.R denote its MBR and n.T

denote its token set which can be obtained from the corre-
sponding entry in its parent node. We prune node n, if

(1) MBR Filter: n.R∩m.R = φ. It invalidates spatial con-
straint, as any subscription under node n (i.e., subscriptions
in n’s leaf descendants) has no overlap with m; or

(2) Token Filter: n.T ∩m.T = φ. It invalidates the textual
constraint. The reason is that any subscription under node
n must contain a token in n.T which does not appear inm.T ,
thus the subscription does not satisfy the textual constraint.

The nodes that are not pruned by the MBR filter and
token filter are called candidate nodes. The subscriptions in
the leaf candidate nodes are candidate answers.

For MBR-filter, to check whether n.R ∩ m.R = φ, we
examine whether n.R has a vertex contained in m.R. For
token filter, to check whether n.T ∩ m.T = φ, we use the
hash table of n’s TokenSet to do the checking as follows.
For each token in m.T , if it is contained in the hash table,
n.T ∩m.T 6= φ; otherwise we check the next token in m.T .

Verification: For each subscription s on leaf candidate n-
odes, we check whether s.R ∩m.R 6= φ and s.T ⊆ m.T . If
yes, s is an answer. To check s.T ⊆ m.T , we first sort the
tokens in m.T (e.g., document frequency order, and we will
discuss different sorting strategies in Section 4.2). Then we
use each token in s.T to do a binary search in m.T .

Algorithm: Given a message m, we traverse the Rt-tree in
pre-order. From the root node, we scan each of its entries,
e.g., node n. If node n satisfies one of the two filters, i.e.,
n.R∩m.R = φ or n.T∩m.T = φ, we prune node n; otherwise
we visit n’s children and repeat the above steps. Iteratively,
we can find all leaf candidate nodes.

Example 3. Consider the Rt-tree in Figure 2 and a mes-
sage m = ({ipad2, AT&T, 32GB, 64GB}, Rm), where Rm is the
dashed MBR in Figure 1. The root node has two entries:
node n2 and node n3. Node n2 is not pruned by the MBR
filter as it has overlap with m.R. n2 is not pruned by the
token filter as it contains “ipad2” which appears in message
m. Thus node n2 is a candidate node. Node n2 has two
entries: n4 and n5. As node n4 has no overlap with m.R,
it is pruned by the MBR filter. Node n5 has spatial over-
lap with m.R and cannot be pruned by the MBR filter. As
n5’s token set {iphone4s, verizon} has no common token
with m.T , n5 is pruned by the token filter. For node n3, we
access its first entry n6. As n6 is not pruned by the MBR
filter and token filter, it is a leaf candidate node. We verify
subscriptions s7, s8, s9 in n6. We prune s7 as it has no spa-
tial overlap with m.R. We prune s8 and s9 as they have a
token “iphone4s” which does not appear in m.T . Similarly
n7 is also a leaf candidate node and we verify s10, s11, s12 in
n7. We prune s10 and s11 as their tokens are not contained
in m.T and get an answer s12.

Notice that an algorithm should satisfy (1) Completeness:
any subscription satisfying the spatial constraint and textual
constraint must be found by the algorithm; and (2) Correct-
ness: any subscription found by the algorithm must satisfy
the two constraints. We prove that the Rt-tree based algo-
rithm satisfies the two properties as stated in Theorem 1.

Theorem 1. The R
t-tree based algorithm satisfies com-

pleteness and correctness.

Proof. We omit the proofs due to space constraints.

804

iphone4s ipad2

AT&T 32GB

64GB
18

iphone4s ipad2

AT&T verizon

32GB 64GB
17

iphone4s

verizon 14
iphone4s ipad2

AT&T verizon

32GB 64GB
13

iphone4s ipad2

AT&T 32GB

64GB
16

iphone4s ipad2

AT&T 32GB 15

iphone4s

AT&T

32GB
R1S1

iphone4s

ipad2

verizon
R2S2

ipad2

AT&T

64GB
R3S3

iphone4s

verizon
R4S4

iphone4s

verizon
R5S5 R6S6

ipad2

AT&T
R8S8

iphone4s

ipad2

AT&T
R9S9

iphone4s

32GB
R10S10

iphone4s

AT&T

32GB
R11S11

iphone4s

ipad2
R12S12

ipad2

64GB
S7 R7

iphone4s

verizon

n1 19

n2 17 n3 18

n4 13 n5 14 n6 15 n7 16

Figure 2: Rt-tree index for subscriptions in Figure 1

4. SELECTING REPRESENTATIVE TOKEN-

S TO IMPROVE THE PERFORMANCE
In this section, we propose an effective technique to reduce

the number of tokens associated with each node, which not
only reduces index sizes but also improves performance.

4.1 Representative Tokens
Different from TokenSets on Rt-tree nodes, we select high-

quality representative tokens and use representative-token
sets to replace TokenSets. For each subscription, we select a
single token as its representative token. For each leaf node,
its representative-token set is the set of representative tokens
of subscriptions within this node. For each internal node, its
representative-token set is the union of representative-token
sets of its child nodes. To differentiate this method from
Rt-tree, we call it Rt+-tree.

We have an observation that if the representative-token
set of a node has no common token with a message, we
can prune the node as stated in Lemma 1. This is because
any subscription under this node cannot satisfy textual con-
straint as it contains tokens which are not in the message.

Lemma 1. Given an R
t+-tree node n and a message m, if

n’s representative-token set has no common token with m.T ,
any subscription under node n cannot be an answer of m.

Example 4. Consider the subscriptions in Figure 1. We
construct an Rt+-tree as shown in Figure 3(a). For subscrip-
tions s1, s2, s3, we respectively select representative tokens
“iphone4s”, “iphone4s”, “ipad2”. Thus the representative-
token set of node n4 is {iphone4s, ipad2}. For s4, s5, s6, we
select representative tokens“iphone4s”. Thus the representative-
token set of node n5 is {iphone4s}. The representative-
token set of n2 is {iphone4s, ipad2} which is the union
of the representative tokens of its child nodes n4 and n5.
For a message m=({AT&T, 32GB, 64GB}, Rm), Rt-tree cannot
prune node n2 as its token set shares a token “AT&T” with
m(Figure 2). Instead Rt+-tree can prune n2 as its representative-
token set shares no common token with m.

There are at most |S| representative tokens and each rep-
resentative token is stored at most H times. Thus the com-
plexity of representative-token sets is O(H× |S|). The Rt+-
tree has the same MBR size with the Rt-tree. Thus the space
complexity of the Rt+-tree is

O
(B

b− 1
× |S|+H× |S|

)

.

We still adopt the filter-and-verification framework in Sec-
tion 3.2 to filter a message. Theorem 2 shows correctness
and completeness of the Rt+-tree based algorithm.

Theorem 2. The R
t+-tree based algorithm satisfies com-

pleteness and correctness.

Comparison of Rt-tree and Rt+-tree: Based on the space
complexity, the Rt+-tree involves much smaller index sizes
than the Rt-tree. More interestingly, we prove that the Rt+-
tree has larger pruning power than the Rt-tree. That is if
the Rt-tree prunes a node, then the Rt+-tree must also prune
the node as stated in Lemma 2.

Lemma 2. Let CRt and CRt+ respectively denote the can-
didate node sets of the R

t-tree based method and the R
t+-tree

based method, we have CRt ⊇ CRt+ .

Example 5. Recall the Rt-tree in Figure 2. Consider a
message m=({AT&T, 32GB, 64GB}, Rm). Node n3 shares com-
mon tokens with m, thus the Rt-tree cannot prune node n3.
However all subscriptions under n3 contain tokens“iphone4s”
or “ipad2” which do not appear in m. Thus n3 can be
pruned. In the Rt+-tree, the representative-token set of n3

is {iphone4s, ipad2} which has no common token with m,
thus the Rt+-tree can prune node n3.

4.2 Selecting Representative Tokens
Given a subscription, there are multiple ways to select a

representative token from this subscription. We introduce
several methods to select high-quality representative tokens.

Random selection: A naive method is to randomly select
a representative token for each subscription. This method
does not utilize the token distribution and can be optimized.

The df-based method: Intuitively the smaller sizes of
representative-token sets, the larger pruning power, and the
smaller number of candidates. Thus it is important to reduce
the sizes of the representative-token sets. To this end, we
select representative tokens based on the df order as follows.
We first select the token with the largest df and take it as
the representative token of subscriptions that contain the
token. Then we remove all such subscriptions and select
the token with the largest df in the remainder subscriptions.
Iteratively we generate representative token.

The idf-based method: A token with higher frequency
usually has larger probability appearing in a message. If
we add such a token into the token set, the token set has
larger probability sharing tokens with the message, thus the
token set has lower pruning power. As the df order selects
the representative tokens with the highest frequencies, the
df based method may lead to low pruning power. To address
this issue, for each subscription, we select the token with the
largest idf as its representative token.

Example 6. Consider the subscriptions in Figure 1. If
we use the df order, the Rt+-tree is shown in Figure 3(a).
As “iphone4s” has the largest df (its df is 9) and it ap-
pears in s1, s2, s4, s5, s6, s8, s9, s10, s11, we select “iphone4s”
as their representative tokens. Then in the remainder sub-
scriptions, i.e., s3, s7, s12, “ipad2” has the largest df, we se-
lect “ipad2” as their representative tokens. For node n4, the

805

iphone4s

ipad218
iphone4s

ipad217

iphone4s
14

iphone4s

ipad213

iphone4s

ipad216
iphone4s

ipad215

iphone4sR1S1 iphone4sR2S2 ipad2R3S3 iphone4sR4S4 iphone4sR5S5 iphone4s R6S6 ipad2 R8S8 iphone4s R9S9 iphone4s R10S10 iphone4s R11S11 iphone4s R12S12 ipad2S7 R7

n1 19

n2 17 n3 18

n4 13 n5 14 n6 15 n7 16

(a) Representative tokens are selected by the df order

ipad2 AT&T

32GB 64GB18
verizon 32GB

64GB17

verizon 14
verizon 32GB

64GB13
ipad2 32GB

64GB16
AT&T

32GB15

32GBR1S1 verizon R2S2 64GBR3S3 verizon R4S4 verizon R5S5 verizon R6S6 AT&T R8S8 AT&T R9S9 32GB R10S10 32GB R11S11 ipad2 R12S12 64GBS7 R7

n1 19

n2 17 n3 18

n4 13 n5 14 n6 15 n7 16

(b) Representative tokens are selected by the idf order

Figure 3: Rt-tree with representative tokens (df of tokens: iphone4s:9, ipad2:6, AT&T:5, verizon:4, 32GB:3, 64GB:2)

subscriptions under n4 are s1, s2, s3, thus its representative-
token set is {iphone4s, ipad2}. On the Rt+-tree there are
23 representative tokens and on the Rt-tree there are 59 to-
kens. Obviously the df order can reduce token-set sizes.
Figure 3(b) shows the Rt+-tree with representative token-
s selected by the idf order. We respectively select “32GB,
verizon, 64GB” for subscriptions s1, s2, s3 with the largest
idf. The representative-token set of node n2 is the union of
these three representative tokens. Consider message m =
({iphone4s, ipad2, AT&T, 64GB}, Rm). The df order cannot
prune node n5 as its representative-token set {iphone4s}
shares a common token with message m. However the id-

f order can prune node n5 as its representative-token set
{verizon} shares no common token with message m.

Locality-aware method: Tokens usually have different
frequencies in different locations. For example, in Figure 1
token “verizon” has a large frequency in node n5(R14) and
low frequency in nodes n6(R15) and n7(R16). We should
consider the locality-aware token distribution to count token
frequencies. To address this issue, we partition the whole re-
gion into several grids and count the frequencies of tokens
for each grid. Thus we can capture the locality-aware fre-
quencies. Then for each subscription, we first sort its tokens
based on by their frequencies in the grid where the sub-
scription locates in and then use the df-based method or the
idf-based method to select representative tokens.

5. SELECTING MULTIPLE REPRESENTA-

TIVE TOKENS
In this section, we propose selecting multiple representa-

tive tokens and devise an efficient filtering algorithm, which
directly finds answers and avoids the verification step.

5.1 Multiple Representative Tokens
Like the Rt+-tree, we also associate each node with a

representative-token set. Different from the Rt+-tree, for
subscription s, we do not repeatedly use a single token for

all ancestors of its corresponding leaf node. Instead we selec-
t different representative tokens for different ancestor nodes
and each ancestor node contains a token of s. If s has larg-
er than H tokens, we insert its last |s|−H+1 tokens into
the leaf node. If s has smaller than H tokens, only the an-
cestors in the first |s| levels contain a token. Formally, let
s.T [i] denote the i-th token in s and we assign s.T [i] to it-
s ancestor at the i-th level. For each node n on the i-th
level, its representative-token set is the set of i-th tokens of
subscriptions under node n, i.e., ∪s∈Sn

s.T [i], where Sn is
the set of subscriptions under node n. Let n.T denote the
representative-token set of node n. For each token t ∈ n.T ,
we build an inverted list In[t] of subscriptions in Sn whose
i-th token is t, i.e., In[t]={s|s∈Sn and s.T [i]=t}.

Example 7. Figure 4 shows the Rt++-tree for subscrip-
tions in Figure 1. For s1, s1.T [1] =“32GB”, s1.T [2] =“AT&T”,
s1.T [3] = “iphone4s”. Consider the first entry at the first
level (the root node), i.e., node n2. Node n2 contains six
subscriptions s1, s2, · · · , s6, thus the subscription set under
node n2 is Sn2

= {s1, · · · s6}. s1.T [1] = “32GB”, s2.T [1] =
“verizon”, s3.T [1] = “64GB”, s4.T [1] = “verizon”, s5.T [1] =
“verizon”, and s6.T [1] = “verizon”. The representative-
token set of node n2 is n2.T = s1.T [1] ∪ s2.T [1] ∪ · · · ∪
s6.T [1] = {verizon, 32GB, 64GB}. The inverted list of“verizon”
in node n2 is In2

[verizon] = {s2, s4, s5, s6}. Similarly for n-
ode n5, it contains three subscriptions, s4, s5, s6. The second
tokens of these subscriptions are “iphone4s”. Thus the to-
ken set of n5 is {iphone4s} and the inverted list of iphone4s
in node n5 is {s4, s5, s6}.

The Rt++-tree has the following good property.

Property 1. For any subscription s, s appears exactly
|s| times on the inverted lists in the R

t++-tree. For any
i < |s|, s appears exactly i times in the first i levels.

For example, consider subscription s8 with tokens {AT&T,
ipad2, iphone4s}. s8 appears three times in the Rt++-tree,
i.e., the inverted list of AT&T in node n1 at level 1, the

806

ipad2:s11

AT&T: s7,s8

32GB:s9,s10

64GB:s12

1817

iphone4s:s4,s5,s614
ipad2:s2

AT&T:s1,s3
13

iphone4s:s11

ipad2:s12

AT&T:s10

16
iphone4s:s9

ipad2:s7,s8
15

R1S1 iphone4s:s2R2S2 ipad2:s3R3S3 R4S4 R5S5 R6S6 R8S8 iphone4s:s8 R9S9 R10S10 iphone4s:s10 R11S11 R12S12S7 R7iphone4s:s1

verizon:s2,s4,s5,s6

32GB:s1

64GB:s3

n1 19

n2 17 n3 18

n4 13 n5 14 n6 15 n7 16

Figure 4: An Rt-tree with multiple representative tokens (iphone4s:9, ipad2:6, AT&T:5, verizon:4, 32GB:3, 64GB:2)

inverted list of ipad2 in node n3 at level 2, and the inverted
list of iphone4s in node n6 at level 3. Obviously s8 appears
once in the first level and twice in the first two levels.

The Rt++-tree has the same MBR size with the Rt-tree but
has much smaller token-set size. We first analyze the token-
set size. For each token of a subscription, it appears in exact-
ly one Rt++-tree node. Thus the total size of representative-
token sets is O(|Savg| × |S|). Then we consider inverted-list
size. Each subscription s appears in exactly |s.T | inverted
lists, and the total inverted-list size is O(|Savg|×|S|). Obvi-
ously the size of token sets and inverted lists is proportional
to the data size. Plus MBR sizes, the overall space is

O
(B

b− 1
× |S|+ Savg × |S|

)

.

5.2 Filtering Algorithms
Consider a message m. We traverse the Rt++-tree from

the root. For a node n in the i-th level, if n.R ∩m.R = φ,
we prune node n as the message invalidates the spatial con-
straint; otherwise for each token t ∈ n.T ∩m.T , we retrieve
the corresponding inverted list In[t]. For each subscription
s ∈ In[t], we count its occurrence number in the first i levels
(i.e., the number of inverted lists of ancestors of node n that
contain the subscription), denoted by cands. We will discuss
how to compute cands later. Here based on cands, we have
the following observations.

Case 1 - cands < i: In this case, subscription s appears
smaller than i times in the first i levels. We can prove that s
is not an answer as formalized in Lemma 3. The reason is as
follows. As s appears in the i-th level, it contains at least i

tokens. For each node on the path from the root to node n,
s must have a token in the node. If cands < i, s must have
a token which does not appear in m. Thus s invalidates the
textual constraint and cannot be an answer.

Lemma 3. Consider a message m and a node n at the i-
th level. For any subscription s on the inverted lists of node
n, if cands < i, s cannot be an answer of m.

For example, consider message m = ({ipad2, 64GB}, Rm)
and node n3 at the second level in Figure 4. For subscription
s7, we have cands7 = 1. We can deduce that s7 cannot be
an answer of the message. The main reason is as follows.
As s7 has 2 tokens, it must appear twice in the first two
levels and its occurrence number should be two. However
its occurrence number cands7 is 1, thus s7 must contain a
token which does not appear in m and s7 is not an answer.

Case 2 - cands = i: We consider the following subcases.

Case 2.1 - cands = i = |s|: In this case, if s.R ∩m.R 6= φ,
s must be an answer of m as stated in Lemma 4. The basic
idea is as follows. Each token of s appears in the Rt++-tree

once. As cands = |s|, all tokens in s are contained in m,
thus s satisfies the textual constraint. As s.R ∩m.R 6= φ, s
satisfies the spatial constraint. Thus s must be an answer.

Lemma 4. Consider a message m and a node n at the i-
th level. For any subscription s on the inverted lists of node
n, if cands = |s| and s.R ∩m.R 6= φ, s must be an answer.

For example, consider the message mr = ({iphone4s,
ipad2, AT&T, 64GB}, Rm) and node n6 at the third level
in Figure 4. For subscription s8, we have cands8 = 3 and
s8 ∩mr.R 6= φ. We can deduce that s8 must be an answer
of mr. The reason is as follows. First s8 has 3 tokens and
cands8 = 3. That is all of its tokens must be contained in
the message. Thus s8 satisfies the token constraint. Second,
as s8 ∩mr.R 6= φ, s8 satisfies the MBR constraint.

Case 2.2 - cands = i < |s|: In this case, if n is an internal
node, there may exist answers under this node, and we need
to visit n’s children and repeat the above steps. On the
contrary, if n is a leaf node, s cannot be an answer. This is
because s only has i < |s| tokens that appear in message m

(i.e., it has at least one token which does not appear in m).

Case 3 - cands > i: In this case n must be a leaf node.
This is because if n is an internal node, cands ≤ i since each
internal node contains at most one token of s. If cands=|s|,
it is similar to Case 2.1; If cands<|s|, it is similar to Case 2.2.

Computing cands: To efficiently compute the occurrence
number cands, we use a hash map M to maintain the oc-
currence numbers. Given a message m and a node n, if
n.R∩m.R 6= φ, we use the hash-based method (Section 3.2)
to compute m.T ∩ n.T . For each token t ∈ m.T ∩ n.T , we
access its inverted list In[t]. For each subscription s in In[t],
we increaseM[s] by 1. Notice that as s may be in multiple
inverted lists on a leaf node, when computing its occurrence
number, we consider all such lists. Obviously cands =M[s].

The Rt++-tree based Algorithm: Based on the above
analysis, we devise an efficient algorithm. We still traverse
the Rt++-tree from the root in pre-order. Given a node n,
for each token t ∈ n.T ∩m.T , we retrieve the corresponding
inverted list In[t]. For each subscription s ∈ In[t], we count
its occurrence number cands. If cands = |s| and s.R∩m.R 6=
φ, s is an answer and added into the result set. If there exists
a subscription s such that cands = i < |s| and n is not a
leaf node, there may exist answers under node n. We access
the node and repeat the above steps; otherwise if there has
no such subscription, we prune node n. The main reason
is as follows. First, all subscriptions with no smaller than
i tokens under node n cannot be an answer. Second, for
subscriptions with smaller than i tokens, if they are answers,
they are added as results when accessing n’s ancestors.

Figure 5 illustrates the pseudo-code. Rt++-Tree first
constructs an Rt++-tree with root r (line 1) and initializes

807

Algorithm 1: Rt++-Tree (S ,m)

Input: S : A subscription set; m: A message
Output: R: Answers of m
Build an Rt++-tree with root r;1

Initialize a hash mapM ;2

Rt++-Tree-Prune (r,m,R,M) ;3

Function R
t++-Tree-Prune(r, m, R,M)

Input: r: An Rt++-tree node; m: A message
R: Answers of m;M: Hash map

Output: R: Answers of m
visitFlag = false;1

for each entry n in node r do2

if n.R ∩m.R = φ then return;3

for token t ∈ n.T ∩m.T do4

for each subscription s in In[t] do5

M[s] =M[s] + 1;6

if !visitFlag & M[s] = i < |s| & n is not a7

leaf node then
visitFlag = true;8

if M[s] = |s| & s.R ∩m.R 6= φ then9

R← s ;10

if visitFlag then11

Rt++-Tree-Prune (n,m,R,M);12

Figure 5: Rt++-Tree based algorithm

a hash mapM (line 2). Then it calls function Rt++-Tree-
Prune to filter message m. Rt++-Tree-Prune first scans
each entry (node n) from the root. If n does not satisfy
spatial constraint (line 3), Rt++-Tree-Prune prunes the
node (line 3); otherwise Rt++-Tree-Prune computes the
intersection of its representative-token set and m.T (line 4).
Then for each token t in the intersection, Rt++-Tree-Prune
accesses its inverted list In[t] and for each subscription s on
In[t], it increases M[s] by 1 to count its occurrence num-
ber (line 6). If M[s] = i < |s| and n is not a leaf node,
Rt++-Tree-Prune visits n’s children (To avoid repeatedly
visiting n’s children, we first set visitFlag as true in line 8 and
then if visitFlag is true, we visit such children in line 12). If
M[s] = |s| and s.R ∩ m.R 6= φ, s is an answer and added
into the result set (line 10).

Example 8. Consider the Rt++-tree in Figure 4 and the
message mr = ({iphone4s, ipad2, AT&T, 64GB}, Rm) in Fig-
ure 1. We first access the root. The first entry, i.e., node
n2, satisfies the spatial constraint. Thus we compute the
intersection of the representative-token set of node n2 and
mr.T . Here we get {64GB} and the corresponding inverted
list In2

[64GB] = {s3}. Thus cands3 = 1 and s3 is a candi-
date. Next we access node n2. We prune its first entry, node
n4, based on the spatial constraint. For its second entry, n5,
we get the intersection of the representative-token set of n-
ode n5 and mr.T , i.e., {iphone4s}. For each subscription
in its inverted list In5

[iphone4s] = {s4, s5, s6}, as their oc-
currence number is 1, which is smaller than the node level
(i.e., 2). Thus the three subscriptions are not candidates.
As there is no candidate, we prune node n5.

Theorem 3. The Rt++-tree based algorithm satisfies com-
pleteness and correctness.

6. EXPERIMENTAL STUDY
In this section we report experimental results. We com-

pared with state-of-the-art method IRTree [7]. We extended
IRTree to support our problem as discussed in Section 2.2.

We used two datasets. The first one was a real dataset
Twitter. We collected 60 million tweets from May 2012 to
August 2012, in which 13 million tweets had locations. We
selected 10 million tweets with region information (denot-
ed by polygon in the twitter dataset) as subscriptions and
used the others as messages. Each subscription contained
an MBR and had 1-5 tokens selected from the tweets. The
average token number of subscriptions was 3. The token
distribution follows a Zipf’s law.

Table 1: Dataset statistics.
Twitter USA

Subscription number 10 million 10 million
Subscription length 1-5 1-5

Avg Subscription length 3 3
Subscription size 0.54 GB 0.65 GB
Token distribution Zipf Uniform

Rt-tree size 1.63 GB 1.76 GB
Rt+-tree size 0.79 GB 0.85 GB
Rt++-tree size 0.89 GB 0.92 GB

We generated four groups of messages and each group
contained 10,000 messages.

(1) Short Point Messages: Each message contained 6-20
tokens and had a point location. (2) Long Point Mes-
sages: Each message contained 100-1000 tokens and had a
point location. (3) Short Range Messages: Each mes-
sage contained 6-20 tokens and had an MBR region. (4)
Long Range Messages: Each message contained 100-1000
tokens and had an MBR region.

We also used a synthetic dataset by combing Point of In-
terests (POIs) in USA and publications in DBLP. The USA

dataset contained 17 million POIs and DBLP had 1.5 million
publications. We generated MBRs from the POIs by select-
ing a POI as the center and extending a random width and
height. Each subscription was generated by selecting an M-
BR and 1-5 tokens from DBLP. Each message was generated
by selecting an MBR and a publication. We also generated
four groups of messages. Table 1 summarized datasets (the
subscription length is the number of tokens).

All the algorithms were implemented in C++. All the
experiments were run on a Windows Server 2008 machine
with an Intel Core E5410 2.33GHz CPU and 16 GB memory.
In the experiments we set b = 25 and B = 50.

6.1 Evaluating Different Sorting Strategies
We evaluated different sorting strategies: random, df, idf,

and locality-aware (We generated 10,000 grids and used the
idf order) on the Rt+-tree as discussed in Section 4.2. The
Rt+-tree sizes for the four methods were respectively 0.76 G-
B, 0.72 GB, 0.79 GB, and 0.83 GB. This is because the df

order shared many tokens in upper-level nodes and the idf

order and the locality-aware method shared few tokens. Fig-
ure 6 shows the results. We can see that idf outperformed
df which in turns was better than random. This is because
idf can prune many unnecessary nodes as infrequent token-
s were on the upper-level nodes which had low probability
to be contained in messages. df reduced token-set sizes by
sharing many common tokens, thus df outperformed ran-

dom. The locality-aware method was better than df and idf

as it used the locality-aware token distributions.

808

 1

 2

 3

 4

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

random
df
idf

locality

(a) Short Point Messages

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

random
df
idf

locality

(b) Long Point Messages

 0

 2

 4

 6

 8

 10

 12

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

random
df
idf

locality

(c) Short Range Messages

 0

 10

 20

 30

 40

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

random
df
idf

locality

(d) Long Range Messages

Figure 6: Evaluation on different sorting strategies using Rt+-tree on Twitter dataset

 0

 1

 2

 3

 4

 5

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

R
t
-Tree

R
t+

-Tree
R

t++
-Tree

(a) Short Point Messages

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

R
t
-Tree

R
t+

-Tree
R

t++
-Tree

(b) Long Point Messages

 0

 2

 4

 6

 8

 10

 12

 14

 16

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

R
t
-Tree

R
t+

-Tree
R

t++
-Tree

(c) Short Range Messages

 0

 10

 20

 30

 40

 50

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

R
t
-Tree

R
t+

-Tree
R

t++
-Tree

(d) Long Range Messages

Figure 7: Evaluation on Rt-tree by using different token sets on Twitter dataset

6.2 Evaluating Rt-tree with Different Token Sets
We evaluated Rt-tree with different token sets, i.e., Rt-

tree with token sets, Rt+-tree with representative tokens,
Rt++-tree with multiple representative tokens. For Rt+-tree
and Rt++-tree, we used the locality-aware method. Figure 7
shows the results. We can see that Rt++-tree outperformed
Rt+-tree which was better than Rt-tree. This is because
Rt++-tree had larger pruning power and did not involve an
expensive verification step. Rt+-tree reduced the token-set
sizes and decreased the number of candidates against Rt-
tree, thus it achieved higher performance than Rt-tree. For
example, in Figure 7(d), for messages with 1000 tokens, Rt-
tree took 50 milliseconds, and Rt+-tree decreased the time
to 28 milliseconds, and Rt++-tree further reduced the time
to 12 milliseconds. For short messages, e.g., tweets, in Fig-
ures 7(a) and 7(c), Rt++-tree only took 1-2 milliseconds.

6.3 Comparison with Existing Methods
We compared our best method Rt++-tree with existing

approaches, the keyword-first method [25], the spatial-first

method [22], and state-of-the-art spatial keyword search method
IRTree [7] as discussed in Section 2.2. All algorithms em-
ployed an in-memory setting. Figures 8 and 9 show the
results on the Twitter and USA datasets respectively.

An observation is that the spatial-first method outperformed
the keyword-first method for point messages (Figures 8(a),
8(b), 9(a), 9(b)). The reason is that the spatial-first method

efficiently found candidate nodes using spatial index struc-
tures while the keyword-first method had no spatial pruning
power. Another observation is that the spatial-first method

had lower performance than the keyword-first method for
range messages (Figures 8(c), 8(d), 9(c), 9(d))), as the spatial-
first method had no textual pruning power.

In addition, notice that IRTree also achieved low perfor-
mance and was even worse than the spatial-first method.
There are two main reasons. First, it associated each R-tree
node with a rather large inverted index and it was very ex-
pensive to traverse the R-tree by using the large inverted in-
dex. Second, it was designed for spatial keyword search and
had to access larger numbers of unnecessary nodes. Thus
IRTree was inefficient for the filtering problem.

Our Rt++-tree based algorithm always achieved the high-
est performance for any types of messages. This is because
Rt++-tree seamlessly integrated the spatial and textual in-
formation and had large pruning power.

6.4 Scalability
We evaluated the scalability of the Rt++-tree based algo-

rithm by varying the numbers of subscriptions. Figure 10
shows the results. We can see that our method scaled very
well, and with the increase of the numbers of subscriptions,
the elapsed time increased sublinearly. This is because even
if the number of subscriptions increased, our indexes still
pruned large numbers of unnecessary subscriptions.

 0

 1

 2

 3

 4

 2 4 6 8 10

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Numbers of Subscriptions (* million)

Message Length = 1000
Message Length = 600
Message Length = 200

(a) Long Point Messages

 0

 5

 10

 15

 2 4 6 8 10

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Numbers of Subscriptions (* million)

Message Length = 1000
Message Length = 600
Message Length = 200

(b) Long Range Messages

Figure 10: Scalability of Rt++-tree on Twitter dataset

7. RELATED WORK
Although there are some studies on location-aware pub-

lish/subscribe systems from a network perspective (e.g., rout-
ing messages) [5, 8, 10], to our knowledge there is no study
on this problem focusing on performance and scalability.

Spatial Keyword Search: Recently there are many stud-
ies on spatial keyword search [30, 6, 15, 13, 27, 7, 28, 26, 3,
23, 4, 21, 20, 17, 18, 29, 16, 12, 19]. The first problem is knn
based keyword search, which, given a location and a set of
keywords, finds top-k nearest neighbors by considering the
distance and textual relevancy. Felipe et al. [13] integrated
signature files and R-tree. Cong et al. [7] combined inverted
files and R-tree. The second problem is region based key-
word search, which, given a region and a keyword query,
finds the relevant objects in this region. Zhou et al. [30]
discussed several strategies to combine R-tree and inverted
indexes. Hariharan et al. [15] integrated inverted lists in-
to R-tree nodes. The third problem is collective keyword
search, which, given a set of keywords, finds a set of close
objects that match the keywords. Zhang et al. [27, 28] inte-
grated keyword bitmap and MBR into R-tree nodes to find
the closest objects.

Obviously the above problems substantially differ from
our location-aware publish/subscribe problem, since they
use a pull model and we employ a push model.

809

 1

 2

 4

 8

 16

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(a) Short Point Messages

 1

 2

 4

 8

 16

 32

 64

 128

 256

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(b) Long Point Messages

 1

 2

 4

 8

 16

 32

 64

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(c) Short Range Messages

 4

 8

 16

 32

 64

 128

 256

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(d) Long Range Messages

Figure 8: Comparison with existing studies on Twitter dataset

 1

 2

 4

 8

 16

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(a) Short Point Messages

 1

 2

 4

 8

 16

 32

 64

 128

 256

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(b) Long Point Messages

 1

 2

 4

 8

 16

 32

 64

 128

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(c) Short Range Messages

 4

 8

 16

 32

 64

 128

 256

 512

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

KeywordFirst
SpatialFirst

IRTree
R

t++
-Tree

(d) Long Range Messages

Figure 9: Comparison with existing studies on USA dataset

Publish/Subscribe Services: Foltz and Dumais [14] s-
tudied the information filtering problem from the IR per-
spective. Fabret et al. [11] and Aguilera et al. [1] studied
the publish/subscribe problem from the database perspec-
tive. Yan and Garcia-Molina studied keyword-based filtering
based on a binary model [25] and a vector space model [24].
There are some studies on XML filtering [2, 9]. Existing pub-
lish/subscribe methods only consider textual descriptions
while we consider both textual and spatial information.

8. CONCLUSION
We study the location-aware publish/subscribe problem.

We propose an effective index structure Rt-tree by integrat-
ing textual description into R-tree nodes. We develop a filter-
and-verification framework, and devise efficient filtering al-
gorithms. We propose reducing the number of tokens associ-
ated with each node which not only reduces index sizes but
improves performance. We also devise an efficient algorith-
m which directly finds answers and avoids the verification
step. Experimental results on real data sets show that our
method achieves high performance and good scalability.

Acknowledgement: This work was partly supported by the Nation-
al Natural Science Foundation of China under Grant No. 61003004
and 61272090, National Grand Fundamental Research 973 Program
of China under Grant No. 2011CB302206, a Tsinghua project under
Grant No. 20111081073, Tsinghua-Tencent Joint Laboratory for Inter-
net Innovation Technology, and the “NExT Research Center” funded
by MDA, Singapore, under Grant No. WBS:R-252-300-001-490.

9. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. In PODC, pages 53–61, 1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of xml
documents for selective dissemination of information. In
VLDB, pages 53–64, 2000.

[3] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD Conference, pages
373–384, 2011.

[5] X. Chen, Y. Chen, and F. Rao. An efficient spatial
publish/subscribe system for intelligent location-based services.
In DEBS, 2003.

[6] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In SIGMOD

Conference, pages 277–288, 2006.

[7] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB, 2009.

[8] G. Cugola and J. E. M. de Cote. On introducing location
awareness in publish-subscribe middleware. In ICDCS

Workshops, pages 377–382, 2005.

[9] Y. Diao and M. J. Franklin. Query processing for high-volume
xml message brokering. In VLDB, pages 261–272, 2003.

[10] P. T. Eugster, B. Garbinato, and A. Holzer. Location-based
publish/subscribe. In NCA, pages 279–282, 2005.

[11] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe. In SIGMOD Conference, pages
115–126, 2001.

[12] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. SEAL:
Spatio-Textual Similarity Search. In VLDB, pages 824-835,
2012.

[13] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, 2008.

[14] P. W. Foltz and S. T. Dumais. Personalized information
delivery: An analysis of information filtering methods.
Commun. ACM, 35(12):51–60, 1992.

[15] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems. In SSDBM, 2007.

[16] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region
construction for moving top-k spatial keyword queries. In
CIKM, pages 932–941, 2012.

[17] K. W.-T. Leung, D. L. Lee, and W.-C. Lee. Personalized web
search with location preferences. In ICDE, pages 701–712, 2010.

[18] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial
keyword search. In ICDE, pages 474–485, 2012.

[19] S. Liu, G. Li, and J. Feng. A Prefix-Filter based Method for
Spatio-Textual Similarity Join. In IEEE TKDE, 2013.

[20] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k
nearest neighbor search. In SIGMOD Conference, pages
349–360, 2011.

[21] S. B. Roy and K. Chakrabarti. Location-aware type ahead
search on spatial databases: semantics and efficiency. In
SIGMOD Conference, pages 361–372, 2011.

[22] H. Samet. Foundations of Multidimensional and Metric Data

Structure. 2006.

[23] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient
continuously moving top-k spatial keyword query processing. In
ICDE, pages 541–552, 2011.

[24] T. W. Yan and H. Garcia-Molina. Index structures for
information filtering under the vector space model. In ICDE,
pages 337–347, 1994.

[25] T. W. Yan and H. Garcia-Molina. Index structures for selective
dissemination of information under the boolean model. ACM
Trans. Database Syst., 19(2):332–364, 1994.

[26] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate
string search in spatial databases. In ICDE, 2010.

[27] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, 2009.

[28] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped
resources in web 2.0. In ICDE, pages 521–532, 2010.

[29] R. Zhong, J. Fan, G. Li, K.-L. Tan, and L. Zhou.
Location-aware instant search. In CIKM, pages 385–394, 2012.

[30] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid
index structures for location-based web search. In CIKM, 2005.

810

	Introduction
	Preliminaries
	Problem Formulation
	Straightforward Methods

	Rt-tree based Method
	Rt-tree Index Structure
	Filtering Algorithms

	Selecting Representative Tokens To Improve The Performance
	Representative Tokens
	Selecting Representative Tokens

	Selecting Multiple Representative Tokens
	Multiple Representative Tokens
	Filtering Algorithms

	Experimental Study
	Evaluating Different Sorting Strategies
	Evaluating Rt-tree with Different Token Sets
	Comparison with Existing Methods
	Scalability

	Related Work
	Conclusion
	References

