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Abstract

In this paper, we propose an efficient method to detect
the underlying structures in data. The same as RANSAC,
we randomly sample MSSs (minimal size samples) and gen-
erate hypotheses. Instead of analyzing each hypothesis
separately, the consensus information in all hypotheses is
naturally fused into a hypergraph, called random consen-
sus graph, with real structures corresponding to its dense
subgraphs. The sampling process is essentially a progres-
sive refinement procedure of the random consensus graph.
Due to the huge number of hyperedges, it is generally in-
efficient to detect dense subgraphs on random consensus
graphs. To overcome this issue, we construct a pairwise
graph which approximately retains the dense subgraphs of
the random consensus graph. The underlying structures are
then revealed by detecting the dense subgraphs of the pair-
wise graph. Since our method fuses information from all
hypotheses, it can robustly detect structures even under a
small number of MSSs. The graph framework enables our
method to simultaneously discover multiple structures. Be-
sides, our method is very efficient, and scales well for large
scale problems. Extensive experiments illustrate the supe-
riority of our proposed method over previous approaches,
achieving several orders of magnitude speedup along with
satisfactory accuracy and robustness.

1. Introduction
Structure detection is the task of fitting models to data.

For example, fitting lines in a point set. Structure detection
has been widely used in many vision problems, such as mo-
tion segmentation and multi-view geometry estimation [4].
In practice, structure detection is a non-trivial task, since
real-world data may contain single or multiple structures,
and may also be contaminated by severe noises and large
amount of outliers.

1.1. Structure Detection Methods
RANSAC [12] is the most popular structure detection

technique [1]. The “hypothesize-and-verify” framework of
RANSAC is very robust to outliers, which represents the

Figure 1. An exemplar illustration of our proposed method. (a)
Input data of 600 points, with 100 inliers per circle (three circles)
and 300 gross outliers. The inliers are perturbed by Gaussian noise
with σ = 0.03. (b) The random consensus graph G. Each hyper-
edge contains four vertices, representing whether these four ver-
tices lying on a circle or not. (c) Adjacency matrix of the pairwise
graph constructed from the random consensus graph. Each dense
subgraph corresponds to a circle. (d) Three detected circles. For
better viewing, please see original color pdf file.

main challenge in many structure detection problems. How-
ever, to obtain a good hypothesis, RANSAC usually needs
a large number of samples [8], especially when the portion
of outliers is large or the noise is severe. When the portion
of outliers is large, the probability of obtaining an all-inlier
sample is very small; while when the noise is severe, the
hypotheses estimated from many all-inlier samples are also
bad, which decrease the probability of obtaining a good hy-
pothesis. At the same time, RANSAC is usually not a good
choice to detect multiple structures and its threshold param-
eter is hard to set [19].

Numerous methods have been derived based on
RANSAC [20, 8, 7, 17, 14, 16], and for a recent survey
please refer to [6]. Generally speaking, these methods try to
improve RANSAC from three perspectives: accuracy, speed
and robustness. Accuracy is improved by choosing better
loss function [21, 22] or adopting a local optimization step
[9]; speed is improved by reducing the number of samples
[20, 7] or applying partial evaluation [16]; and robustness
is improved by adaptively adjusting the two parameters of
RANSAC, the threshold parameter [22] and the number of
iterations [21]. These methods may partially overcome the
drawbacks of RANSAC, but the two key issues still remain:
how to detect multiple structures in data and how to robustly
fit structures under severe noises.
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Another category of methods directly detects clusters
in the parameter space of the models, and each cluster in
the parameter space is the indicator of a structure in data
[10, 18, 23]. Such methods can detect multiple structures;
however, they suffer from non-trivial parameter space digi-
tization and poor computational efficiency.

Recently, by analyzing the residual distribution of ran-
dom hypotheses to a point, a new category of structure de-
tection methods has been proposed [19, 3, 4, 24]. Zhang
and Kosecka [24] revealed that multiple structures appear
as multiple modes in the residual distribution, and proposed
to detect them via nonparametric mode seeking. Toldo
and Fusiello [19] proposed a “conceptual representation”,
essentially a reduction of the parameter space to a one-
dimensional discrete space of hypothesis index. Robust fit-
ting then proceeds by agglomerative clustering of the con-
ceptual representations of the data points. Chin [3, 5, 4]
proposed to sort the residuals and construct an affinity mea-
sure based on the sorted residuals. Such affinity measure
can then guide hypothesis generation [5] or be used as ker-
nel to analyze the clusters [4]. Such methods essentially
rely on the assumption that there are multiple hypotheses
close to real structures. To reliably detect structures, a large
number of samples are required.

From the perspective of hypergraph clustering, Bulo and
Pelillo [2] proposed to detect structures by mining dense
subgraphs. Liu et al. [15] further improved this method
and proposed a strategy to detect all dense subgraphs in a
hypergraph. The hypergraph is an elegant tool to fuse var-
ious useful information, and detecting structures by min-
ing dense subgraphs is inherently robust to both noises and
outliers. However, these methods suffer from two issues:
1) high computational complexity to construct hypergraphs,
and 2) high memory requirement to store hypergraphs.

1.2. Our Contributions
Our proposed method adopts the hypergraph clustering

framework, but utilizes the “hypothesize-and-verify” strat-
egy to approximately construct hypergraphs. Since the con-
structed hypergraph expresses the consensus information in
all random samples, we call it random consensus graph. In
the random consensus graph, each vertex represents a data
point and the weight of each hyperedge represents the de-
gree of consensus of its associated vertices. When an MSS
is sampled, a hypothesis is generated and the weights of its
related hyperedges are updated. Thus, the sampling process
is essentially a progressive refinement procedure of the ran-
dom consensus graph. As the number of samples increases,
the weights of hyperedges become more accurate and the
dense subgraphs become more significant. Due to the sig-
nificance of the dense subgraphs, usually a small number of
samples is sufficient to correctly reveal them. To efficiently
detect the underlying structures, we construct a pairwise
graph which approximately retains the dense subgraphs of

the random consensus graph, and then detect the dense sub-
graphs on the pairwise graph. Figure 1 illustrates the overall
framework for our proposed method.

2. Hypergraph-based Structure Detection
Suppose the input data contains n points, P =

{p1, . . . , pn}. The model to fit is Mθ, with k parameters
θ = {θ1, . . . , θk}, e.g., k = 2 for 2d lines, k = 3 for 2d cir-
cles. Each instance of the model is called a structure, which
corresponds to a θ. When saying P contains a structure with
parameter θ, it means that the model Mθ fits many points in
P . Obviously, the core to detect a structure is to estimate the
corresponding parameter θ. Since there are k components
in θ, to obtain a hypothesis θ, generally at least k points
are required. A sample of k points is called a minimal size
sample (MSS). Note that some MSSs may be degenerated,
from which we cannot obtain a deterministic hypothesis.

To capture the relations in P , we can construct a hyper-
graph G = {V,E,W}. V = {v1, . . . , vn} is the vertex set,
with each vi representing a point xi ∈ P . E is the edge
set, with each e ∈ E being a hyperedge composed by k+1
vertices, e = {ve1 , . . . , vek+1

}. W : E → R is the weight
function over hyperedges in E, with each hyperedge e ∈ E
being attached a weight we ∈ W .

Each hyperedge e ∈ E represents the relation among k+
1 points {pe1 , . . . , pek+1

}. For an instance of the model Mθ

with parameter set θ, the deviation of the point pei to this
model is dei(θ) ≥ 0, then the deviations of all these k + 1
points form a set {de1(θ), . . . , dek+1

(θ)}. The deviation of
the hyperedge e to the model Mθ is then defined as:

de(θ) = max
i={1,...,k+1}

dei(θ), (1)

where de(θ) is the maximal deviation of all k+1 points as-
sociated with hyperedge e to the model Mθ. The weight we

can then be defined as the deviation of e to the best model,

we = min
θ

de(θ), (2)

where we measures the potential of all k + 1 points asso-
ciated with e belonging to the same instance of the model.
The smaller the we is, the more probable that they belong to
the same instance of the model.

For a structure in data, any combination of k + 1 points
belonging to the structure should form a hyperedge e with
small we, thus, all points in this structure form a dense sub-
graph of G. In [15], Liu et al. utilize this phenomenon
to detect structures in data and achieve the state-of-the-art
performance. However, precisely constructing G is compu-
tationally expensive, especially when n is large, since there
are

(
n

k+1

)
hyperedges in E.

3. Random Consensus Graph
Inspired by RANSAC, we adopt the “hypothesize-and-

verify” framework to approximately construct the hyper-
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graph G. We randomly select a minimal size sample (MSS)
and estimate a hypothesis θ, and then the deviations of all
points in P to the model Mθ are computed, that is, we
obtain a deviation vector d(θ) = {d1(θ), . . . , dn(θ)} for
all points in P . For each edge e ∈ E, we can obtain
de(θ) = maxk+1

i=1 dei(θ). If de(θ) is smaller than the cur-
rent weight of e, then we set we = de(θ). The obtained
hypergraph G′ is called random consensus graph, since it
is constructed by random sampling and retains the consen-
sus information in all hypotheses. Suppose there are T hy-
potheses in total, with parameters being θ1, . . . , θT , respec-
tively. Then as the number of hypotheses increases from 1
to T , we obtain a series of successively better approxima-
tion of the hypergraph G, that is, {G′(1), . . . , G′(T )} with
G′ = G′(T ).

In G′(i), for any hyperedge e,

w′
e(i) =

i
min
t=1

de(θt). (3)

Obviously, w′
e(1) ≥ . . . ≥ w′

e(T ) ≥ we, and as the number
of hypotheses T increases, w′

e(T ) gradually approaches we

along a non-increasing trajectory.
Generally speaking, the sampling process can be consid-

ered to be a progressive refinement procedure of the ran-
dom consensus graph G′. All the off-the-shelf sampling
strategies [20, 7] for improving RANSAC can be utilized
to improve the approximation of G′; however, usually a
coarse approximation is sufficient to reveal all structures in
data. Since G′ is an approximation of G, we use them in-
terchangeably hereafter.

Since the number of hyperedges is huge, for the consid-
eration of efficiency, we neither really compute the weight
we for each hyperedge e, nor store each hyperedge. Instead,
we store all T deviation vectors {d(θ1), . . . , d(θT )}, which
contain only nT elements but retain all the information of
the random consensus graph G.

4. From Hypergraph to Pairwise Graph
As stated before, it is inefficient to detect dense sub-

graphs of the random consensus graph G′, due to the huge
number of hyperedges. Since our aim is to detect structures
in data, which correspond to dense subgraphs of G′, we
propose to overcome this issue by constructing a pairwise
graph G∗ = {V ∗, E∗,W ∗} which approximately retains
the dense subgraphs of G.

If a point pi is an inlier of a structure with m inliers, then
any k inliers in this structure, together with pi, form a hy-
peredge with small weight. That is, pi is a vertex of at least(
m−1
k

)
hyperedges with small weights. On the contrary, if

pi is not an inlier of any structure, then the number of hy-
peredges containing pi should be small. This phenomenon
inspires us to compute the weights of G∗ by counting the
number of common hyperedges with small weights.

Algorithm 1 Computing W ∗ based on T deviation vectors
1: Input: T deviation vectors and δ.
2: Set all entries in W ∗ to zeros.
3: for Each deviation vector d(θ) do
4: Compute I(θ) = {i|di(θ) ≤ δ} and ν=

(|I(θ)|−2
k−1

)
.

5: for each pair {i, j}, i < j in I(θ) do
6: w∗(i, j) = w∗(i, j) + ν and set w∗(j, i) =

w∗(j, i) + ν;
7: end for
8: end for
9: Output: W ∗.

Suppose E(δ) = {e|e ∈ E,we ≤ δ} and Epi(δ) =
{e|pi ∈ e, e ∈ E,we ≤ δ}. That is, E(δ) contains all
hyperedges in G with weights not larger than δ, and Epi

(δ)
is a subset of E(δ) with all hyperedges containing pi. The
weight of the pairwise graph G∗ is then defined as follows:

w∗
ij = |Epi(δ) ∩Epj (δ)|. (4)

That is, the weight w∗
ij , i ̸= j, is the number of hyperedges

in E(δ) containing both pi and pj . Since w∗(i, i) contains
no consensus information, we simply set w∗(i, i) = 0 for
all i, that is, the pairwise graph G∗ has no self-edges.

The adjacency matrix W ∗ of the graph G∗ captures
the intuition that, if two points are in the same structure,
then they appear in many common hyperedges with small
weights, otherwise not. Thus, real structures form dense
subgraphs of G∗. To automatically determine the number
of structures and obtain them, we only need to robustly lo-
cate the dense subgraphs of G∗.

Since we store all T deviation vectors, we need to effi-
ciently compute W ∗ from these T deviation vectors. For
a deviation vector d(θ) = {d1(θ), . . . , dn(θ)}, suppose
I(θ) = {i|di(θ) ≤ δ}. Since any k + 1 points in I(θ)
forms a hyperedge in E(δ), for any two points in I(θ), they
share

(|I(θ)|−2
k−1

)
hyperedges whose vertices are in I(θ). Ob-

viously, for any pair of points, simply adding the number of
their shared hyperedges in all deviation vectors will result
in duplicate counting of some hyperedges; however, since
our aim is to detect dense subgraphs of G∗ and duplicate
counting usually enhances these dense subgraphs (note that
a hypothesis θ close to real structures tends to have larger
I(θ)), we allow the duplicate computation and compute W ∗

as in Algorithm 1.

In Algorithm 1, for each deviation vector d(θ), we only
compute a value ν and then add them to all edges whose
both vertices are in I(θ). Thus, it is very efficient, as veri-
fied by latter experimental results.
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5. Dense Subgraph Detection over Pairwise
Graph G∗

To detect dense subgraphs of G∗, we utilize the method
proposed in [15], which has been proven to be very robust
to noise and outliers, compared with spectral method. How-
ever, we make some modifications to further improve the
algorithmic robustness in our problem setting.
5.1. Dense Subgraph Detection

We now briefly introduce the dense subgraph detection
algorithm in [15], which is suitable for both graphs and hy-
pergraphs. In a pairwise graph G∗, if all the vertices in a
subset U ⊆ V ∗ form a dense subgraph, then the weights of
all pairwise edges in its edge set, denoted as E∗

U ⊆ E∗, are
relatively larger, compared with other subgraphs with |U |
vertices. In [15], Liu et al. proposed to measure such en-
semble phenomenon by the sum of weights of all edges in
E∗

U , that is:
S(U) =

∑
e∈E∗

U

w∗
e . (5)

For a subset U ⊆ V ∗, suppose y is an n × 1 indicator
vector of the subset U , such that yvi = 1 if vi ∈ U and zero
otherwise, then S(U) can be expressed as:

S(U) = S(y) =
1

2

∑
i,j

w∗(i, j)yiyj . (6)

The aim is to optimize the average weights, which can
be expressed as:

Sav(U) =
1

m2
S(y)

=
1

2

∑
i,j

w∗(i, j)
yi
m

yj
m

=
1

2
xTW ∗x, (7)

where x = y/m. As
∑

i yi = m,
∑

i xi = 1 is a natural
constraint over x.

To approximately maximize Sav(U), Liu et al. [15] pro-
posed to optimize the following problem:{

max f(x) = 1
2x

TW ∗x,
subject to x ∈ ∆n and xi ∈ [0, ε],

(8)

where ∆n = {x ∈ Rn : x ≥ 0 and
∑

i xi = 1} is the
standard simplex in Rn and ε ≤ 1 is a constant.

As pointed out in [15], in the formulation (8), the only
parameter ε offers us a tool to control the least number of
vertices in a dense subgraph. Since each component of x
does not exceed ε, the number of selected points is at least
⌈ 1
ε⌉, where ⌈ 1

ε⌉ represents the smallest integer larger than
or equal to 1

ε . In our settings, we can utilize ε to control the
minimal number of inliers for a structure, which is useful
and usually easy to set.

The formulation (8) is not convex, which is in fact desir-
able in our settings. The data may contain multiple struc-
tures, with each structure corresponding to a significant
cluster in G∗, and thus a significant maximum of (8).

From any x(0), [15] optimizes it in the following pair-
wise way:

x′
l =

 xl, l ̸= i, l ̸= j;
xl + α, l = i;
xl − α, l = j.

(9)

Then

f(x′)−f(x) = −w∗(i, j)α2+((W ∗x)i−(W ∗x)j)α (10)

Obviously, when (W ∗x)i > (W ∗x)j , we can select a
proper α > 0 to increase f(x). By iteratively optimize (8)
according to (9), we can obtain a solution of (8). For the
algorithmic details, please refer to [15].

5.2. Our Modifications
According to our experiments, in our settings, the prod-

uct of weights of all edges in E∗
U is a better measure than

S(U), which is defined as:

P (U) =
∏

e∈E∗
U

w∗
e . (11)

To utilize the optimization framework proposed in [15],
we transform P (U) in the following way:

log(P (U)) =
∑
e∈E∗

U

log(w∗
e). (12)

That is, we simply replace the weight of each edge e of
graph G∗ by log(w∗

e).
Why is the product of weights better than the sum of

weights in our settings? This is because in the dense sub-
graphs of G∗, some weights may be extremely large, com-
pared with other weights. The sum of weights may be dom-
inated by such extreme large weights; after replacing w∗

e

by log(w∗
e), large weights are suppressed and then the sum

better reflects the ensemble effect.
Although the pairwise graph G∗ has n(n−1)

2 edges, most
of them have relatively small weights. Since edges with
small weights have little influence on the computation of
dense subgraphs, we discard them and only store the sparse
version of G∗ for efficiency in dense subgraph detection.

To obtain multiple clusters, we need to construct mul-
tiple initializations for (8). Suppose the minimal number
of points in a cluster is h, then we set ε = 1

h . We pro-
pose to construct N initializations in the following way:
for each of the T hypotheses obtained in the sampling pro-
cess, we rank it according to the h smallest deviations in
the deviation vector d(θ), that is, we define a measure q(i)
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Algorithm 2 Construct an initialization x(0) from a devia-
tion vector d(θi)

1: Input: The deviation vector d(θi) and h;
2: Sort all deviations in ascending order;
3: Select the h points with the h smallest deviations to

form a set L.
4: For each point pj ∈ L, set the corresponding compo-

nent xj(0) =
1
h ;

5: Output: an initialization x(0).

for the i-th hypothesis, which is the sum of the h small-
est values in d(θi) = {d1(θi), . . . , dn(θi)}. Then we se-
lect N hypotheses corresponding to the N smallest q(i) ∈
{q(1), . . . , q(T )} to construct initializations. The method
of constructing an initialization from a deviation vector is
described in Algorithm 2.

If there are hypotheses close to real structures in data, our
method will choose them to construct initializations and the
optimization procedure is to utilize information from other
hypotheses to improve them. If there is no hypothesis close
to a real structure in data, our method will try to deduce
a correct one according to the information from all T hy-
pothesis. The number of initializations, N , is usually much
smaller than T . In fact, the initializations corresponding to
true clusters are usually constructed from high-ranked hy-
potheses, thus the result is not sensitive to N .

6. Structure Recovery and Overall Algorithm
From the N initializations, we can obtain N dense sub-

graphs of G∗, with each dense subgraph representing a po-
tential structure in data. First, each dense subgraph con-
tains at least h = [ 1ε ] points, which may be only part of the
corresponding structure. From these points, we can fit the
structure Mθ precisely and then obtain all inliers. Second,
there are many dense subgraphs corresponding to the same
underlying structure. We can eliminate such duplications
by comparing either the points in cluster or the estimated
structure parameter θ. Third, after eliminating duplications,
the remaining dense subgraphs are usually real structures in
data. In some cases, there may be some detected subgraphs
not corresponding to any real structures in data. Such sub-
graphs correspond to small local maxima of (8) and are in
fact not dense, thus can be easily classified and eliminated.

The overall algorithm is summarized in Algorithm 3. Al-
though there are four parameters, δ, h, T and N , our pro-
posed method is in fact not sensitive to them, unless they
are set unreasonably. T is the number of samples and can
be roughly estimated as in RANSAC. N is the number of
initializations, usually set to a fixed number, such as 100. δ
determines the hyperedges in consideration when comput-
ing W ∗ and is usually set to a small number depending on
the level of noises. h is the minimal cluster size, which is

Algorithm 3 Structure Detection Algorithm
1: Input: The dataset P , the deviation threshold δ, the

minimal cluster size h, the number of samples T , the
number of initializations N .

2: Sample T MSSs and generate T hypotheses, obtain T
deviation vectors.

3: Compute the adjacency matrix W ∗ by Algorithm 1.
4: Set ε = 1

h , rank all T hypotheses and generate N ini-
tializations by Algorithm 2.

5: From N initializations, detect N dense subgraphs of
G∗.

6: Fit structures to dense subgraphs and eliminate dupli-
cate structures.

7: Output: Detected structures.

usually easy to determine. Since subgraphs corresponding
to real structures are very dense, adjusting these parameters
in a wide range usually has small impact on the results, as
demonstrated in latter experiments.

7. Complexity Analysis
The time complexity of constructing random consensus

graph is O(Tn), where T is the number of hypotheses and
n is the number of points in data. The time complexity of
constructing N initializations is O(Nn log(n)), since we
need to sort n deviations when constructing each initializa-
tion. The time complexity of optimizing (8) from N ini-
tializations is O(Ntu), where t is the maximal number of
iterations for the pairwise optimization and u is the max-
imal number of edges involved in optimizing (8). Note
that graph G∗ is very sparse and only a small number of
edges around the local cluster are involved in optimizing
(8). Thus, u is usually small. The overall time complexity
is then O(Tn+Nn log(n)+Ntu). The space complexity of
our method is also very low. The T deviation vectors need
O(Tn) space, and the graph G∗ needs O(υ) space, where
υ is the number of edges in sparse graph G∗ and υ ≪ n2.
Thus, our proposed method is very efficient, and can deal
with large scale problems.

8. Experiments
We evaluate our proposed algorithm on three tasks: k-

line fitting, plane fitting, and homography estimation, and
compare our proposed method with three state-of-the-art
structure detection methods, namely, J-Linkage [19], KF
method [4] and affinity clustering [15]. The time com-
plexity of J-Linkage is O(n2), the time complexity of KF
method is about O(n3), due to the SVD decomposition, and
the time complexity of affinity clustering is about O(nk+1),
due to the time-consuming hypergraph construction proce-
dure. For the J-Linkage and KF method, we use the codes
published on the web, and for the affinity clustering method,
we use the code provided by the author.
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Figure 2. (a) A point set with 3 lines. (b) The detected 3 lines by
our proposed method.

8.1. k­Line Fitting
In this experiment, we detect lines in randomly generated

point sets. The point sets are generated as follows: first
generate 3 lines, with each line containing ni points, then
add Gaussian noise N(0, σ) on these points. Finally we add
no uniformly distributed outliers to the point set. Figure 2
illustrates one such point set and the detected 3 lines by our
proposed method. In this experiment, we uniformly sample
MSSs with replacement.

We score the performances of all methods by two mea-
sures. From the viewpoint of clustering, we compute the
clustering precision, that is, for each structure, in the ni best
fitted points, how many points agree with the ground truth.
From the view point of fitting, we compute the fitting error,
that is, for a detected structure, the total deviation of ground
truth to it. All algorithms ran on the same data sets over 30
trials for each value of the varying parameter and the mean
performance curves are plotted. To demonstrate the vari-
ances, we plot the curves of one standard deviation below
(above) the mean for clustering precision (fitting error).

In Figure 3, we fix ni = 30, no = 90 and vary the noise
σ from 0.01 to 0.08. The parameters of our method are
T = 1000, N = 100, δ = 0.01 and h = 30. Clearly, the
affinity clustering method performs best, since it precisely
computes the whole hypergraph and thus utilizes all ensem-
ble information. The KF method is not stable, sometimes,
it can only detect one or two lines in the point set, which
is reflected by the large variance of its performance curves;
while our proposed method can robustly detect all clusters.
This may be due to two reasons: 1) the ordered residual
kernel utilized in KF method is not as good as the adja-
cency matrix W ∗ in our method, and 2) KF method detects
clusters by spectral method, which is easily distributed by
noises and outliers, while our proposed method detects clus-
ters by the method proposed in [15], which is very robust to
outliers. An adjacency matrix W ∗ and Ordered Residual
Kernel in the same experiment are shown in Figure 3(c) and
Figure 3(d), respectively. Obviously, the adjacency matrix
W ∗ exploits better cluster structure than the ordered resid-
ual kernel, which is in accordance with our intuition. The
J-Linkage method produces too many clusters, for each line

Figure 3. (a) Clustering precisions of all four methods as noises
increases. (b) Fitting errors of all four methods as noise amount
increases. (c) The adjacency matrix W ∗ from our method. (d) The
Ordered Residual Kernel in KF method.

Figure 4. (a) Clustering precisions of all four methods as the num-
ber of outliers increases. (b) Fitting errors of all four methods as
the number of outliers increases. (c) Average time of all four meth-
ods as the number of outliers increases. (d) The total deviation of
h best fitted points for detected clusters.

in data, we select the cluster that best fits it as the final re-
sult.

In Figure 4, we fix ni = 30, σ = 0.03 and increase
the number of outliers from 60 to 180. The parameters of
our method are the same as in Figure 3. The result reveals
the same fact as in Figure 3: the affinity clustering works
best, the KF method is not stable, while J-Linkage and our
method work well. Figure 4(c) demonstrates the average
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Figure 5. Performance curves under different parameters. (a) The
number of samples T . (b) The minimal cluster size h. (c) The
deviation threshold δ. (d) The number of initializations N .

time of all methods. As expected, the affinity clustering
is slow, since it is computationally very expensive to pre-
cisely construct the hypergraph and obtain its dense sub-
graphs. Our method is much more efficient than J-Linkage
and KF methods. For our method, in some cases, it may
detect more clusters than expected; however, the measure q
(the total deviation of h best fitted points) of the fake cluster
is usually significantly larger than those of the real clusters,
as demonstrated in Figure 4(d). In Figure 4(d), there are
only three lines, thus the measure q of the fourth cluster is
significantly larger than the three real clusters.

The performance curves of our method under different
parameters are plotted in Figure 5. In this experiment, we
fix ni = 50, no = 150 and σ = 0.03. For the parameter T ,
we also plot the performance curves of J-Linkage and KF
method. Obviously, our method is not sensitive to these
parameters under wide ranges. As expected, the perfor-
mance decreases in the following situations: 1) the number
of samples (T ) is too small, 2) h is too small, which weak-
ens the ensemble effect, 3) the deviation threshold (δ) is
too large, which leads to unreliable weights for the pairwise
graph, and 4) the number of initializations (N ) is too small,
which may miss some real clusters. Note that in Figure 5(a),
when T is very small, the performance of J-Linkage and KF
method drops faster than our method.

Finally, we test the performance of J-Linkage, KF
method and our method in large point sets. In this exper-
iment, we fix ni = 1000, σ = 0.03 and change ni from
1000 to 16000. We set T = 5000, N = 100, h = 1000 and
δ = 0.001. The time curves are plotted in Figure 6(a) (y
axis is in log scale!) and the curves of cluster precision are
plotted in Figure 6(b). Obviously, our method is much more
efficient than the other two methods, due to the efficiency of

Figure 6. (a) Times spent for different methods. (b) Clustering
precisions of different methods.

Figure 7. (a) Church of Pozzoveggiani. (b) 3D point cloud of the
church (top view).

our method in computing W ∗ and subgraph detection. Note
that it is time prohibitive to test the performance of affinity
clustering in this experiment, and thus we do not report its
performance here.

8.2. Plane Fitting
As in [19], we detect planes in the 3d point cloud of the

church of Pozzoveggiani (Italy) [11]. Figure 7(a) is an im-
age of the church and Figure 7(b) illustrates the 3d point
cloud (top view). The point cloud has 11094 points, and
there are 9 planes (ignore some small planes). As pointed
out in [19], it is difficult to correctly detect 9 planes in this
point cloud, due to the pseudo-outliers and the uneven dis-
tribution of points among the models. Since nearby points
tend to belong to one structure, in this experiment, we adopt
the neighborhood sampling strategy as in [19]. Obviously,
it is prohibitive to apply affinity clustering method on this
problem, thus, we only compare our algorithm with the J-
Linkage and KF methods. We repeat the experiment 10
times, and in each time, we sample T = 5000 MSSs. We
count the number of correctly detected structures and score
all three methods by the average number of correctly de-
tected structures. The result is reported in Table 1, and the
average time for each method is also reported. The result
clearly demonstrates that our method is more efficient, and
at the same time, it can correctly detect more planes, since it
fuses the information of all hypotheses. In this experiment,
we set δ = 0.01, N = 100 and h = 50.
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Table 1. Results of plane fitting on the church of Pozzoveggiani.
Both the average number of detected planes and the average time
are reported.

J-Linkage KF method Our Method
Number 7.2 5.9 7.8
Time(seconds) 1067.8 7213.3 8.9477

Figure 8. Homography estimation results by our proposed method.
The four planar structures are shown in different symbols and col-
ors. For clarity, we only show the corners points in dense sub-
graphs (50 inliers for each planar structure). For better viewing,
please see original enlarged color pdf file.

8.3. Homography Estimation
As in [4], we also test our proposed method on the task of

planar homographies detection. Images of buildings in mul-
tiple views were obtained from the web, along with their
precomputed interest point correspondences. Each time
we sample 4 correspondences and estimate the homogra-
phy matrix using the Direct Linear Transformation (DLT)
algorithm [13]. We sample 5000 samples using neighbor-
hood sampling technique, and set h = 50, N = 100 and
δ = 0.001. Figure 8 demonstrates that our method can cor-
rectly detect the four planar structures. Since no ground
truth, we do not compare with other methods on this task.

9. Conclusions and Future Work
In this paper, we proposed an efficient method to detect

structures in data. We utilized the hypergraph framework
to fuse consensus information from different hypotheses,
with each dense subgraph of the hypergraph correspond-
ing to a structure. Inspired by the efficiency of RANSAC,
we adopted the random sampling technique to construct the
hypergraph. To achieve further speed up, we proposed to
construct a pairwise graph which approximately retains the
dense subgraphs of the hypergraph. The pairwise graph
can be computed efficiently and the dense subgraphs of
the pairwise graph can be detected efficiently and robustly.
Both theoretic analysis and experimental results show that
our proposed method can correctly detect multiples struc-
tures in data, and very efficient, compared with off-the-shelf
structure detection methods.
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