
DESKS: Direction-Aware Spatial Keyword Search

Guoliang Li, Jianhua Feng, Jing Xu

Department of Computer Science, Tsinghua University, Beijing 100084, China
liguoliang@tsinghua.edu.cn; fengjh@tsinghua.edu.cn; xmandbq@gmail.com

Abstract— Location-based services (LBS) have been widely
accepted by mobile users. Many LBS users have direction-aware
search requirement that answers must be in a search direction.
However to the best of our knowledge there is not yet any
research available that investigates direction-aware search. A
straightforward method first finds candidates without considering
the direction constraint, and then generates the answers by prun-
ing those candidates which invalidate the direction constraint.
However this method is rather expensive as it involves a lot of
useless computation on many unnecessary directions. To address
this problem, we propose a direction-aware spatial keyword
search method which inherently supports direction-aware search.
We devise novel direction-aware indexing structures to prune
unnecessary directions. We develop effective pruning techniques
and search algorithms to efficiently answer a direction-aware
query. As users may dynamically change their search directions,
we propose to incrementally answer a query. Experimental results
on real datasets show that our method achieves high performance
and outperforms existing methods significantly.

I. INTRODUCTION

Location-based services (LBS) have been widely accepted

by mobile users. Many online location-based services are

available, such as AT&T (http://www.wireless.att.com/lbs) and

go2 (http://www.go2.com/). Recently many LBS users have

direction-aware search requirement that answers must be in a

search direction. For example, a user on the highway wants

to find nearest gas stations or restaurants. She has a search

requirement that the answers should be in the right front of

her driving direction, if in a right-hand traffic country (e.g., US

and China). Consider another example that a user is walking

to a supermarket. She wants to find an ATM around her walk

direction so as to avoid a long walk. In this case she also has

a direction-aware search requirement. There are many other

direction-aware search requirements in LBS, e.g., multiple

destination routing and virtual reality (to show local 3D

streetscape). More importantly, many modern mobilephones

(e.g., iPhone 4 and HTC) have GPS and compass. We can

easily get user’s location via the GPS and direction by the

compass. Thus we can utilize user’s location and search

direction to improve user search experiences in LBS.

However to the best of our knowledge there is not yet

any research available that investigates direction-aware search.

A straightforward method to support direction-aware search

first finds the candidates without considering the direction

constraint (e.g, [6] and [5]) and then generates the answers

by pruning those candidates that invalidate the direction con-

straint. However this method is rather expensive as it involves

a lot of useless computation on many unnecessary directions.

To address this problem, we propose a direction-aware

spatial keyword search method, called DESKS, which inher-

ently supports direction-aware search. We first formulate the

problem of direction-aware spatial keyword search as follows.

Consider a set of Points of Interest (POIs) where each POI

is associated with spatial information and textual description.

Given a direction-aware spatial keyword query with a location,

a direction, and a set of keywords, the direction-aware search

finds k nearest neighbors of the query which are in the search

direction and contain all input keywords.

To support direction-aware spatial keyword queries, we

devise novel direction-aware index structures to prune un-

necessary directions. We first group the POIs based on their

distances to the bottom-left point of the Minimum Bounding

Rectangle (MBR) that contains all POIs. Then for POIs in each

group, we sort them based on their directions to the bottom-left

point. Given a query, we can deduce a direction range with

a lower direction bound and an upper direction bound. We

can prove that for any POI if its direction to the bottom-left

point is not in the direction range of the query, it will not be

an answer, and we can prune the POI. Similarly we can also

prune a group of POIs based on the direction range. Motivated

by this observation, we develop novel direction-aware index

structures, effective pruning techniques, and efficient search

algorithms to facilitate direction-aware spatial keyword search.

To summarize, we make the following contributions.

• We formulate the problem of direction-aware spatial

keyword search and propose an efficient direction-aware

search method to address this problem.

• We devise a novel direction-aware index structure which

groups the POIs based on their distances and directions.

The indexing structures can be used to effectively prune

many unnecessary POIs.

• We develop effective pruning techniques and search algo-

rithms to answer direction-aware spatial keyword queries.

As mobilephone users may dynamically change search

directions, we propose to incrementally answer a query

based on the cached results of previously issued queries.

• We have implemented our method, and the experimental

results show that our method achieves high performance

and outperforms existing methods significantly.

The rest of this paper is organized as follows. We first

formulate the problem of direction-aware spatial keyword

search and devise a novel indexing structure in Section II. We

develop effective pruning techniques in Section III. Section IV

gives efficient algorithms to answer a direction-aware query.

We discuss how to incrementally answer a query in Section V.

Experiment results are provided in Section VI. We review

related works in Section VII and conclude in Section VIII.

II. DIRECTION-AWARE SPATIAL KEYWORD SEARCH

A. Problem Formulation

Data: Consider a set of POIs, P = {p1, p2, · · · , p|P|}. Each

POI pi has a location (pi.x, pi.y) where pi.x is the x-

coordinate and pi.y is the y-coordinate of the POI. pi is also

associated with a set of keywords, denoted by pi.d. Thus a

POI is denoted by p = 〈(p.x, p.y); p.d〉.

Query: A query q contains a location (q.x, q.y) with an x-

coordinate q.x and a y-coordinate q.y. Query q has a direction

constraint [α, β], which denotes that the user is only interested

in the POIs with directions to q in [α, β]. Query q contains

a set of user-input keywords K = {k1, k2, · · · , k|K|}. Users

can specify an integer k to find top-k relevant answers. Thus

query q is denoted by q = 〈(q.x, q.y); [α, β];K; k〉.

Answer: Let R denote the Minimum Bounding Rectangle

(MBR) that contains all POIs in P . Given a query q with

direction [α, β], let Sq denote the sector centered at q with a

radius r and an angle from α to β, where r is the maximal

distance from q to the boundary of region R. Let Rq denote

the intersection of Sq and R, which is the search region

satisfying the direction constraint. A POI p is an answer of

query q, if p is in Rq and p.d contains all keywords in K.

Let Pq denote the set of all answers of q. We find k nearest

neighbors of q from Pq . Next we formulate our problem.

Definition 1 (DIRECTION-AWARE SPATIAL KEYWORD

SEARCH) Given a set of POIs P and a query q =
〈(q.x, q.y); [α, β];K; k〉, let Pq denote the set of POIs in Rq

that contain all keywords in K. DESKS finds a subset Pk
q of

Pq with k POIs such that ∀p ∈ Pk
q and ∀p′ ∈ Pq − P

k
q ,

dist(p, q) ≤ dist(p′, q), where dist(·) is a distance function

and in the paper we use Euclidean distance∗.

Consider an example in Figure 1. There are 24 POIs. Given

a query q with keywords “chinese food”, the ten highlighted

POIs p3, p4, p5, p6, p9, p12, p15, p21, p22, p23 contain the two

keywords. If we have no direction constraint, p3 and p4 are two

nearest neighbors. If we have direction constraint as shown in

Figure 1, p12 and p22 are two nearest neighbors.

We can extend existing spatial keyword search methods (e.g,

[6] and [5]) to support our problem. The method contains two

steps. (1) The filter step: It ignores the direction constraint

and finds k nearest neighbors of query q which contain all

keywords. (2) The verification step: For each found POI in the

first step, it checks whether the POI is in the search direction.

If yes, it is a k nearest neighbor of q. As most k nearest

neighbors of q may invalidate the direction constraint, it needs

to repeatedly execute the two steps until finding k answers.

Although we can incorporate the verification step into the filter

step, this method still needs to visit many unnecessary POIs.

To address this problem, we propose a direction-aware spatial

keyword search method to achieve a high performance.

B. Direction-aware Indexing Structures

Given a set of POIs, we first generate the MBR R that

contains all POIs. Let Obl, Obr, Otr, Otl respectively denote

∗We suppose q∈R and our method can be extended to support q 6∈R.

R1
R1
R2
R2
R2
R3
R3

p3
p4
p5
p6
p9
p11
p12
p15
p21
p22
p23

R1
R1
R1
R2
R2
R2
R3
R3

p3
p4
p5
p6
p7
p9
p12
p15
p21
p22
p23

R P R P

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

9

10

2

3

1

2

4

3

4

2

3

4

1

2

4

3

4

R11={p1, p2},R12={p3, p4},R13={p5, p6},R14={p7, p8}
R21={p9, p10},R22={p11, p12},R23={p13, p14},R24={p15, p16}
R31={p17, p18},R32={p19, p20},R33={p21, p22},R34={p23, p24}

Fig. 1. A running example

the bottom-left point, the bottom-right point, the top-right

point, and the top-left point of R as shown in Figure 1.

We sort the POIs based on their distances to the bottom-left

point Obl. Without loss of generality, assume the sorted POIs

are p1, p2, · · · , p|P| where dist(pi, Obl) ≤ dist(pj , Obl) for

i < j. Then we evenly partition them into N disjoint buckets,

B1, B2, · · · , BN . If every POI has a distinct distance to Obl,

we have Bi={p(i−1)×λ+1, · · · , pi×λ} for 1≤i≤N − 1 and

BN={p(N−1)×λ+1, · · · , p|P|} where λ=⌈ |P|
N
⌉. If multiple

POIs have the same distance to Obl, we partition the POIs

into different buckets as follows. We first put the first λ POIs

into the first bucket B1. If dist(pλ+1, Obl)=dist(pλ, Obl),
we add pλ+1 into B1; otherwise, we add λ POIs starting

with pλ+1 into B2. Iteratively we can put each POI into a

bucket. Let ri−1 denote the smallest distance of POIs in Bi

for 1 ≤ i ≤ N . We draw N−1 arcs centered at Obl with

radiuses r1, r2, · · · , rN−1. The N−1 arcs partition R into N
regions (quarter concentric rings) R1,R2, · · · ,RN , whereR1

is within r1, RN is outside rN−1, and Ri is between ri−1

and ri for 1 < i < N . Obviously the POIs in Bi fall in

Ri. Especially a POI on the i-th arc belongs to region Ri+1.

Obviously the distance of any POI in Ri to Obl is in [ri−1, ri)
for 1 ≤ i < N(r0 = dist(p1, Obl)). For example, in Fig-

ure 1, we partition POIs into three regions R1={p1, · · · , p8},
R2={p9, · · · , p16}, and R3={p17, · · · , p24}.

Each POI p in region Ri has a direction to the bottom-

left point Obl, denoted by pθ=arctan p.y−Obl.y
p.x−Obl.x

. For ease of

presentation, suppose Obl=(0, 0). Thus pθ=arctan p.y
p.x

. We

sort POIs in Ri based on their directions in ascending order.

Similarly we evenly partition POIs in Ri into M buckets

Bi1 , Bi2 , · · · , BiM . Each bucket contains about
|P|

M×N
POIs.

Suppose the minimal direction of POIs in bucket Bij is

θij−1
for 1 ≤ j ≤ M . We use M−1 lines from Obl

with directions θi1 , θi2 , · · · , θiM−1
to partition Ri into M

sub-regions (a part of concentric rings) Ri1 ,Ri2 , · · · ,RiM .

Obviously the direction of any POI in Rij is in [θij−1
, θij).

For example, in Figure 1, we partition each Ri into four sub-

regions. For instance, we partition R2 into R21={p9, p10},
R22={p11, p12}, R23={p13, p14}, and R24={p15, p16}.

bl br

trtl

ii-11

N

1 2 i N

1 2

i-1

1 2

Ri

Ri

Ri

p4
p7
p12
p18
p57
p68
p79

p22
p23
p34
p48
p57
p64
p92

if have large memory if have small memory

R P R P

Ri1 Ri j RiM

j

ij

1

3

7

Ri

Ri

Ri

2

3

8

i

Fig. 2. Indexing structure

Our region structure is illustrated in Figure 2, which has

two salient features. Firstly given two sub-regions Ris and

Rjt , for any POI p ∈ Ris and p′ ∈ Rjt , if i < j, we

have dist(p,Obl) < dist(p′, Obl). Secondly given two sub-

regions Ris and Rit , for any POI p ∈ Ris and p′ ∈ Rit , if

s < t, we have pθ < p′θ . We will use these two features to do

efficient pruning. Notice that traditional MBRs have no such

features, thus we propose the new index structure to facilitate

direction-aware search.

Although we can use the region structure to do spatial

pruning, we cannot use it to do textual pruning. To address this

issue, we build an inverted list for keywords in each sub-region

Rij . We give the space complexity of our index structure. For

the region structure, its space complexity is O(M × N). As

M × N is not large (N=1000, M=600 for 16 million POIs,

see Section VI), we can keep the region structure in memory.

For the inverted lists, suppose each POI contains W distinct

keywords in average. The total inverted-list size isO(|P|×W).
If the inverted-list size is very large, we use a disk-based

structure. For each keyword kx, we maintain two inverted lists:

(1) The region list LRkx
that keeps the sorted IDs of sub-regions

that contain kx. The sub-regions are sorted as follows. Ris <
Rjt if i < j, and Ris < Rit if s < t; (2) The POI list

LPkx
that keeps the sorted IDs of POIs that contain kx: The

POIs in different sub-regions are sorted by sub-region order

and the POIs in the same sub-region are sorted by directions.

In LRkx
, for each Rij ∈ L

R
kx

, we also maintain a pointer to the

POI list LPkx
that keeps the position of the smallest POI ID in

Rij∩L
P
kx

. Based on the sorted property, supposeRij ’s pointer

is lij and the pointer of its next sub-region is lij+1
. We can

efficiently find POIs in Rij that contain keyword kx from LPkx
,

e.g., the POIs in LPkx
[lij , lij+1

). Suppose each sub-region Rij

contains L distinct keywords in average. The space complexity

of the disk-based inverted list is O(|P| ×W +L×M ×N).
The overall index structure is shown in Figure 2. Note that to

efficiently answer a query, besides building an index structure

for Obl, we also maintain index structures for Obr , Otr, Otl.

Thus the total index size is four times of that for Obl.

For example, in Figure 1, there are 24 POIs. Suppose

N=3 and M=4. We generate 12 sub-regions, R11 , · · · ,R14 ,

q

i

i i

ij

ij

ij-1

pi-1j

pij

pi-1j-1

pij-1

R

R

ij

ij-1

i-1

i-1

Fig. 3. Notations

R21 , · · · ,R24 , R31 , · · · ,R34 . Each sub-region has two POIs.

For example, in R22 , there are two POIs p11 and p12.

For keyword “chinese”, we maintain a region inverted list

which has seven sub-regions and a POI inverted list that has

eleven POIs as shown in Figure 1. The pointer of R13 is

LP
chinese

[2] = p5, that is p5 is the smallest POI in R13 that

contains “chinese”. Thus we can easily get POIs in R13

that contain “chinese” using its pointer as the start position

(LP
chinese

[2]) and using the pointer of its next sub-region as

the end position (LP
chinese

[4]), i.e., LP
chinese

[2, 4) = {p5, p6}.
In this paper we study how to use our index structures to

answer a direction-aware spatial keyword query and leave data

update as a future work.

C. Notations

For ease of presentation, we introduce some notations as

shown in Figure 3. Let qθ = arctan q.y
q.x

denote the direction

of q to Obl and qd = dist(q, Obl) denote the distance of q to

Obl. Given a regionRi, let ri−1 and ri respectively denote the

radius of its inner arc and its outer arc. Given a sub-regionRij ,

we use a quadruple to denote the region, 〈ri−1, ri, θij−1
, θij 〉,

where θij−1
is the minimum direction and θij is the maximal

direction of POIs in Rij to Obl. Let pi−1j , pi−1j−1
, pij , pij−1

respectively denote the bottom-left point, bottom-right point,

top-left point, and top-right point of Rij (Figure 3).

Let q
ri−1

α (q
ri−1

β) denote the intersection of the line from q
with α(β) direction and the inner arc of Ri (with radius ri−1).

ii-

i i

Fig. 4. Pruning R1, · · · ,Ri−1

bl br

trtl

i

i- i

MinDist q,Ri i- d

d

(a) α ≤ qθ ≤ β

bl br

trtl

i

i- i

MinDist q,Ri dist q

i-1

ri-1

(b) qθ < α

bl br

trtl

i

i- i

i-1

MinDist q,Ri dist q
ri-1

(c) qθ > β
Fig. 5. MINDIST(q,Ri)

As q
ri−1

α (q
ri−1

α .x, q
ri−1

α .y) is on the arc with radius ri−1, we

have (q
ri−1

α .x)2 + (q
ri−1

α .y)2 = r2i−1. In addition, as the point

is on the line with direction α to q, (q
ri−1

α .y−q.y)/(q
ri−1

α .x−
q.x) = tanα†. Thus we can compute the x-coordinate and

y-coordinate of q
ri−1

α using the following Equations
{

(q
ri−1

α .y − q.y)/(q
ri−1

α .x− q.x) = tanα
(q

ri−1

α .x)2 + (q
ri−1

α .y)2 = r2i−1
(1)

Similarly, we can compute the point q
ri−1

β .

Let q
θij−1

α (q
θij
α) denote the intersection of the line from

q with α direction and the line from Obl with θij−1
(θij)

direction. Similarly we can define q
θij−1

β and q
θij
β . As

q
θij−1

α (q
θij−1

α .x, q
θij−1

α .y) is on the line with direction θij−1

to Obl, (q
θij−1

α .y)/(q
θij−1

α .x) = tan θij−1
. As the point is on

the line with direction α to q, (q
θij−1

α .y − q.y)/(q
θij−1

α .x −
q.x) = tanα. Thus we can compute the x-coordinate and

y-coordinate of q
θij−1

α using the following Equations
{

(q
θij−1

α .y − q.y)/(q
θij−1

α .x− q.x) = tanα

(q
θij−1

α .y)/(q
θij−1

α .x) = tan θij−1

(2)

Similarly, we can compute the points q
θij
α , q

θij−1

β , and q
θij
β .

Suppose the intersection of the line from q with α(β)
direction and the boundary of R is qRα (qRβ) as shown in

Figure 3. Next we discuss how to compute qRα . Suppose q′θ
denote the direction from q to the top-right point Otr. If

α > q′θ, qRα will fall on the top line from Otl to Otr. In this

case the y-coordinate of qRα , qRα .y = H , and x-coordinate

of qRα , qRα .x = q.x + (H − q.y)/ tanα, where H is the

height of the MBR R. If α = q′θ, qRα is exactly Otr. If

α < q′θ , qRα will fall on the right line from Obr to Otr. In

this case the x-coordinate qRα .x = L and the y-coordinate

qRα .y = q.y+ (L− q.x)× tanα, where L is the length of the

MBR R. Thus we can compute the point qRα as follows.

(qRα .x, qRα .y) =







(q.x+ H−q.y
tanα

, H) α > q′θ
(L, H) α = q′θ
(L, q.y + (L− q.x)× tanα) α < q′θ

(3)

Similarly we can compute qRβ . We will use the above-

mentioned points to do pruning in the following sections.
†In this section, we suppose 0 ≤ α ≤ β ≤ π

2
and our technique can be

easily extended to support other directions (Section IV).

III. PRUNING UNNECESSARY REGIONS

In this section, we propose effective pruning techniques

to prune unnecessary regions Ri (Section III-A) and Rij

(Section III-B). We first consider the direction in 0 ≤ α ≤
β ≤ π

2 and discuss how to support any direction in Section IV.

A. Pruning Region Ri

Consider regionsR1,R2, · · · ,RN with the radiuses of their

outer circles respectively r1, r2, · · · , rN . Given a query q,

we first locate in which region q appears. To this end, we

first compute its distance to Obl, qd. Then we use a binary

search on r1, r2, · · · , rN to find the first radius which is larger

than qd. Suppose we find ri such that ri−1 ≤ qd < ri as

shown in Figure 4. We can prove that any POI in regions

R1,R2, · · · ,Ri−1 will not be an answer of query q, as they

are not in the search direction as formalized in Lemma 1.

Lemma 1 Given a query point q with 0 ≤ α ≤ β ≤ π
2 ,

suppose ri−1 ≤ qd < ri. Any POI in R1,R2, · · · ,Ri−1

cannot be an answer of q‡.

Lemma 1 holds for any query with direction 0 ≤ α ≤ β ≤
π
2 . For example, in Figure 1, we can directly prune region R1

and all POIs inR1 do not need to be accessed. Note that it may

not hold if β > π
2 . Consider a counter-example where a query

q is on the bottom line from Obl to Obr . If β is larger than π
2 ,

the search direction may have overlap with Ri−1. Similarly

α should be no smaller than 0 and the counter-example is a

query on the left line from Obl to Otl.

MINDIST function for Ri: To facilitate nearest neighbor

search, traditional methods use function MINDIST to estimate

the distance between a query and an MBR [10]. Formally,

given a query q and an MBR mbr, function MINDIST(q, mbr)
returns the minimal distance of q to mbr. As Ri in our method

is not an MBR and our query has direction constraint, we

extend the function to support our problem as follows.

If q is outside the outer arc of Ri(qd ≥ ri), we have

MINDIST(q,Ri)=∞ based on Lemma 1. If q is in Ri(ri−1 ≤
qd < ri), we have MINDIST(q,Ri) = 0. If q is inside the

inner arc of Ri(qd < ri−1), we give the function as follows.

Consider the direction of q to Obl, qθ . If α ≤ qθ ≤ β, the near-

est neighbor of q in Ri is the intersection of the line with qθ
direction and the inner arc ofRi with radius ri−1(Figure 5(a)).

Thus MINDIST(q,Ri) = ri−1 − qd . If qθ < α, the nearest

‡In this paper, we omit the proofs of Lemmas due to space constraints.

i

i i

R

R

R
u

R
l

p

(a) τR
l = θqRα and τR

u = θqR
β

i

i i

R

R

R
u

R
l

p

(b) τR
l = qθ and τR

u = θqR
β

i

i i

R

R

R
u

R
l

p

(c) τR
l = θqRα and τR

u = qθ

Fig. 6. Direction-based pruning for regions Ri, · · · ,RN

ilu

ii-

Ri
Ri

R

R
i

i

R
u

R

l

Fig. 7. Direction-based Pruning for Ri

neighbor of q inRi is q
ri−1

α which is the intersection of the line

from q with α direction and the inner arc of Ri(Figure 5(b)).

Thus MINDIST(q,Ri) = dist(q, q
ri−1

α). Similarly if qθ > β,

MINDIST(q,Ri) = dist(q, q
ri−1

β) (Figure 5(c)).

Thus we give the MINDIST function as follows.

MINDIST(q,Ri) =























∞ qd ≥ ri
0 ri−1 ≤ qd < ri
ri−1 − qd qd < ri−1 & α ≤ qθ ≤ β
dist(q, q

ri−1

α) qd < ri−1 & qθ < α
dist(q, q

ri−1

β) qd < ri−1 & qθ > β
(4)

where q
ri−1

α and q
ri−1

β can be computed using Equation 1.

Given a query q, we first find its located region Ri

and access the POIs in Ri. Then we verify whether the

POIs satisfy the direction constraint and contain all key-

words. Suppose the k-th smallest distance of the candi-

dates that have been computed is dk . Then for the next

region Ri+1, if MINDIST(q,Ri+1) ≥ dk, we terminate and

prune Ri+1, · · · ,RN ; otherwise we access POIs in Ri+1.

Iteratively we can find all answers. As we use the best-

first search method, we only utilize MINDIST function and

will not use MINMAXDIST function [10]. For example, in

Figure 1, suppose k = 1. In R2, we find an answer p12.

As MINDIST(q,R3) > dist(q, p12), we terminate and prune

POIs in R3.

However this method neglects the fact that some sub-

regions Rij in Ri may not satisfy the direction constraint.

For example, in Figure 1, although R21 has a POI p9 which

contains all keywords, we can prune the region as it is not in

the search direction. Similarly we can prune R24 . To achieve

our goal, we discuss how to effectively prune Rij in Ri.

B. Pruning Regions Rij

In this section, we first introduce how to prune some

unnecessary sub-regions Rij which have no overlap with the

search direction, and then give the function MINDIST(q,Rij).
In the rest of this paper, if the context is clear, the term

“region” and “sub-region” are used interchangeably for Rij .

Our indexing structure has a salient feature: If a POI p is an

answer of q, its direction (pθ = arctan p.y
p.x

) to Obl must be in

a range [τRl , τRu]. In other words, we can prune the POIs with

direction smaller than τRl or larger than τRu . Next we discuss

how to deduce the lower bound τRl and the upper bound τRu .

Given query q with direction [α, β], consider the intersection

qRα (qRβ) of the line from q with α(β) direction and the

boundary of region R as shown in Figure 6. Let θqRα and

θqR
β

respectively denote the directions of points qRα and qRβ
to Obl. As α ≤ β, θqRα ≤ θqR

β
. Let τRl = min(θqRα , qθ) and

τRu = max(θqR
β
, qθ). For any point p, if pθ > τRu , its direction

to q must be larger than β, thus p cannot be an answer of q
(Figure 6(b)). Similarly, if pθ < τRl , its direction to q must be

smaller than α, thus p cannot be an answer of q (Figure 6(c)).

The correctness is formalized in Lemma 2.

Lemma 2 Given a query q with direction [α, β], let τRl =
min(θqRα , qθ) and τRu = max(θqR

β
, qθ). For any POI p, if

pθ>τRu or pθ<τRl , p cannot be an answer of q.

Based on Lemma 2 we only need to access the POIs with

directions between τRl and τRu . Moreover, a region Rij has

a lower direction bound θij−1
and an upper direction bound

θij , which respectively denote the minimal direction and the

maximal direction of POIs in Rij . In other words, for any POI

p ∈ Rij we have θij−1
≤ pθ < θij . Based on Lemma 2, for

region Rij with direction [θij−1
, θij), if θij ≤ τRl or θij−1

>
τRu , we can prune the region Rij as formalized in Lemma 3.

Lemma 3 Given a query q with direction [α, β], let τRl =
min(θqRα , qθ) and τRu = max(θqR

β
, qθ). For any region Rij

with direction [θij−1
, θij), if θij ≤ τRl or θij−1

> τRu , any

POI in Rij cannot be an answer of q.

For example, in Figure 1, although R21 and R24 have POIs

that contain all keywords, we can prune them as they are

not in search direction based on the direction-based pruning

technique in Lemma 3. Notice that this pruning technique is

valid for all regions. Next we devise tighter direction bounds

for region Ri. Let τRi

l denote the tighter lower bound and

τRi
u denote the tighter upper bound for Ri. For any POI p in

Ri, if pθ < τRi

l or pθ > τRi
u , we can prune the POI. Next

we discuss how to deduce the two tighter bounds.

Consider the intersection of the line from q with α(β)
direction and the outer arc of Ri, denoted by qriα (qriβ). The

two points can be computed by Equation 1. Let θqriα , θqri
β

respectively denote the directions of points qriα , qriβ to Obl.

It is easy to figure out that if qriα is in region R (denoted

by qriα ∈ R), θqriα ≥ θqRα ; otherwise θqriα < θqRα (Figure 7).

Similarly if qriβ ∈ R, θqri
β
≤ θqR

β
; otherwise θqri

β
> θqR

β
. Based

on this observation, we give the tighter bounds τRi

l and τRi
u .

τRi

l =







qθ qθ ≤ α
θqriα qθ > α & qriα ∈ R

θqRα qθ > α & qriα 6∈ R
(5)

bl br

trtl

i-1

ii-

i
MinDist q,Ri q, p

q p

ij

ij-1

i-1j-1j

p
i-1j-1

ij

i-1j-1

(a) R
<
i [0, θij−1

)

bl br

trtl

i

ii-

i

q

ij

ij-1

ij

qri-1MinDist q,Ri q, j

i-1

(b) R
<
i [θij−1

, θij)

bl br

trtl

i-

ii-

i

ij

ijij-1

MinDist q,Ri q, j

ij

q ij

q p i-1j

pi-1j

(c) R
<
i [θij ,

π

2
]

bl br

trtl

i-

ii-

i
MinDist q,Ri q,

j

ij

ij-1

ij

ij-1

q
ij-1

p
i-1j-1

(d) Ri[0, θij−1
)

bl br

trtl

i-

ii-

i MinDist(q,Ri) = 0

ij

ij-1

ij

j

(e) Ri[θij−1
, θij)

bl br

trtl

i-

ii-

i MinDist(q,Ri)=dist(q,)

ij

ij

ij-1

ij

j q ij

pi-1j

(f) Ri[θij ,
π

2
]

Fig. 8. MINDIST(q,Rij)

τRi
u =











qθ qθ ≥ β
θqri

β
qθ < β & qriβ ∈ R

θqR
β

qθ < β & qriβ 6∈ R
(6)

Then consider region Rij with the minimal direction θij−1

and the maximal direction θij . If θij ≤ τRi

l or θij−1
> τRi

u ,

region Rij has no overlap with the search direction, thus

we can prune Rij . In other words, for Ri, we only need to

access the regionsRil , · · · ,Riu , such that θil−1
≤τRi

l <θil and

θiu−1
≤τRi

u <θiu . To efficiently identify such regions, we use

τRi

l to do a binary search on the directions of regions in Ri,

{θi1 , · · · , θiM }, and find the smallest one which is larger than

τRi

l , i.e., Ril . Then we use τRi
u to do a binary search on the

directions in {θil+1
, · · · , θiM }, and find the largest one which

is smaller than τRi
u , i.e., Riu . Thus we only need to access

Ril , · · · ,Riu . Lemma 4 formalizes the pruning technique.

Lemma 4 Given a query q with direction [α, β] and a region

Ri, let τRi

l =min(θqriα , qθ) and τRi
u =max(θqri

β
, qθ). For any

POI p∈Ri, if pθ>τRi
u or pθ<τRi

l , p cannot be an answer of q;

For any region Rij∈Ri with direction [θij−1
, θij), if θij≤τ

Ri

l

or θij−1
>τRi

u , any POI in Rij cannot be an answer of q.

Consider the example in Figure 1. We can prune regions

R21 and R24 in R2, and regions R31 and R34 in R3.

MINDIST for Rij : For each region Rij in {Ril , · · · ,Riu},
we use MINDIST function to estimate the distance between

q and Rij , i.e., MINDIST(q,Rij). To this end, we partition

R into three regions by the inner arc (ri−1) and the outer arc

(ri), i.e., the region inside the inner arc R<
i , the region Ri,

and the region outside R>
i . Obviously, if q ∈ R>

i , any POI

in Rij will not be an answer of q based on Lemma 1, thus

MINDIST(q,Rij) =∞. For R<
i and Ri, we respectively par-

tition them into three regions based on the two directions θij−1

and θij , denoted by R<
i [0, θij−1

),R<
i [θij−1

, θij),R
<
i [θij ,

π
2],

and Ri[0, θij−1
),Ri[θij−1

, θij),Ri[θij ,
π
2] (Figure 8).

(1) q∈R<
i [0, θij−1

) (Figure 8(a)). If we have no direction

constraint, the nearest neighbor of q is the bottom-right point

pi−1j−1
. Next, we consider the case with direction [α, β]. Let

θ(q, pi−1j−1
) denote the direction from q to pi−1j−1

. If α ≤
θ(q, pi−1j−1

) ≤ β, the nearest neighbor of q is still pi−1j−1
.

If θ(q, pi−1j−1
) < α, the nearest neighbor of q is q

ri−1

α , which

is the intersection of the line from q with α direction and the

arc with radius ri−1 (computed by Equation 1). Similarly if

θ(q, pi−1j−1
) > β, the nearest neighbor of q is q

θij−1

β , which

is the intersection of the line from q with β direction and the

line from Obl with θij−1
direction (computed by Equation 2).

(2) q∈R<
i [θij−1

, θij) (Figure 8(b)). If α ≤ qθ ≤ β, the nearest

neighbor of q is q
ri−1

θ which is the intersection of the line from

q with qθ direction and the arc with radius ri−1. The distance

is ri−1 − qd. If qθ < α, the nearest neighbor of q is q
ri−1

α . If

qθ > β, the nearest neighbor of q is q
ri−1

β .

(3) q∈R<
i [θij ,

π
2] (Figure 8(c)). Similar to case (1), consider

the bottom-left point pi−1j . Let θ(q, pi−1j) denote the direc-

tion from q to pi−1j . If α≤θ(q, pi−1j)≤β, the nearest neighbor

of q is pi−1j . If θ(q, pi−1j)<α, the nearest neighbor of q is

q
θij
α . If θ(q, pi−1j)>β, the nearest neighbor of q is q

ri−1

β .

(4) q∈Ri[0, θij−1
) (Figure 8(d)). As β ≤ π

2 , the nearest

neighbor of q must be q
θij−1

β (computed by Equation 2).

(5) q∈Ri[θij−1
, θij) (Figure 8(e)). As q is in Rij ,

MINDIST(q,Rij)=0.

(6) q∈Ri[θij ,
π
2] (Figure 8(f)). As α ≥ 0, the nearest neighbor

of q must be q
θij
α (computed by Equation 2).

To summarize, we give function MINDIST(q,Rij) in Table I.

TABLE I

MINDIST(q,Rij)

Regions MINDIST(q,Rij)

R>
i ∞

R<
i [0, θij−1

)











dist(q, q
ri−1
α) θ(q, pi−1j−1

) < α

dist(q, pi−1j−1
) α ≤ θ(q, pi−1j−1

) ≤ β

dist(q, q
θij−1

β
) θ(q, pi−1j−1

) > β

R<
i [θij−1

, θij)







dist(q, q
ri−1
α) qθ < α

ri−1 − qd α ≤ qθ ≤ β

dist(q, q
ri−1

β
) qθ > β

R<
i [θij ,

π
2
]











dist(q, q
θij
α) θ(q, pi−1j

) < α

dist(q, pi−1j
) α ≤ θ(q, pi−1j

) ≤ β

dist(q, q
ri−1

β
) θ(q, pi−1j

) > β

Ri[0, θij−1
) dist(q, q

θij−1

β
)

Ri[θij−1
, θij) 0

Ri[θij ,
π
2
] dist(q, q

θij
α)

IV. SEARCH ALGORITHMS

In this section, we first give an algorithm to answer a query

with direction 0 ≤ α ≤ β ≤ π
2 (Section IV-A), and then discuss

how to answer a query with any direction (Section IV-B).

A. Answering Queries with 0 ≤ α ≤ β ≤ π
2

We combine our pruning techniques and MINDIST func-

tions to answer a query with direction 0 ≤ α ≤ β ≤ π
2 .

Figure 9 gives the pseudo-code of our algorithm. To efficiently

find k nearest neighbors of q, we maintain a priority queue Q
(line 2) and keep the k-th smallest distance of POIs in Q
to q (dk) that have already been computed (line 3). Given

a query q, we first locate which region query q appears

using a binary search method on radiuses r1, r2, · · · , rN
(line 4). Suppose we find Ri such that ri−1 ≤ qd < ri. If

MINDIST(q,Ri) ≥ dk, we terminate as there is no answer

in Ri · · · RN (line 6); otherwise for each region Ri, we find

the “candidate regions” which have overlap with the search

direction and contain all keywords in K, by calling function

FINDCANDREGIONS(line 7). Next for each candidate region

Rij ∈ CRi
, if MINDIST(q,Rij) ≥ dk, we break as there is no

answer in Rij · · · RiM (line 9); otherwise we find “candidate

POIs” in Rij which are in the search direction and contain

all keywords, by calling function FINDCANDPOIS(line 10).

Finally we need to access region Ri+1 if necessary (line 11).

Iteratively we can find the k nearest neighbors of query q.

Then we discuss how to compute the candidate regions

in Ri. Function FINDCANDREGIONS gives the pseudo-code

(Figure 9). We first compute the lower direction bound τRi

l

and the upper direction bound τRi
u (line 2). Next we find

the regions satisfying the direction constraint Ri[α, β] =
{Ril , · · · ,Riu} (in [τRi

l , τRi
u]) using a binary search method

on the directions θi1 , · · · , θiM (line 3). Then if the inverted

lists are in memory, we check whether each region in Ri[α, β]
contains all keywords and add such regions into candidate-

region set CRi
. If we use a disk-based method, we load

region inverted lists for each keyword LRki
(line 4), compute

their intersection LRK that satisfies keyword constraint (line 5),

intersect the regions satisfying keyword constraint LRK with

the regions satisfying region constraint Ri[α, β], and get

RK
i [α, β] (line 6). For each region Rij ∈ R

K
i [α, β], if

Algorithm 1: DESKS-BAISC (P , q)

Input: P : A collection of POIs

q = 〈(q.x, q.y); [α, β];K, k〉: A query

Output: Pk
q = {p|p ∈ Pq and p is a knn of q}, where Pq

is the set of POIs in the search direction that

contain all the keywords in K.

begin1

Initialize an empty priority queue Q;2

Let dk denote the k-th smallest distance in Q ;3

Locate the region Ri where q appears using a binary4

search on r1, · · · , rN ;

while i ≤ N do5

if MINDIST(q,Ri) ≥ dk then return;6

else CRi
= FINDCANDREGIONS(q, Ri, dk) ;7

for Rij ∈ CRi
(CRi

are sorted) do8

if MINDIST(q,Rij) ≥ dk then break;9

else FINDCANDPOIS(q, Rij , dk, Q) ;10

i = i+ 1 ;11

end12

Function FINDCANDREGIONS(q, Ri, dk)

Input: q = 〈(q.x, q.y); [α, β];K, k〉: A query

dk: The k-th smallest distance in Q
Ri: Region Ri

Output: CRi
: A sorted candidate-region set

begin1

Compute direction bounds τRi

l and τRi
u ;2

Find regions Ri[α, β] = {Ril , · · · ,Riu} in3

[τRi

l , τRi
u] using a binary search on θi1 · · · θiM ;

Load region inverted lists LRki
for ki ∈ K ;4

Compute LRK = ∩ki∈KL
R
ki

;5

Compute RK
i [α, β] = Ri[α, β] ∩ L

R
K ;6

for Rij ∈ R
K
i [α, β] do7

if MINDIST(q,Rij) < dk then CRi
←Rij ;8

Sort CRi
based on the MINDIST function ;9

end10

Function FINDCANDPOIS(q, Rij , dk, Q)

Input: q = 〈(q.x, q.y); [α, β];K, k〉: A query

dk: The k-th smallest distance in Q
Rij : Region Rij ; Q: Queue

begin1

Load POI inverted lists LPki
(Rij) for ki ∈ K ;2

Compute intersection LPK=∩ki∈KL
P
ki
(Rij) ;3

for p ∈ LPK do4

if α≤θ(q, p)≤β & dist(q, p)<dk then5

add p into Q, and update Q and dk ;6

end7

Fig. 9. DESKS-BAISC algorithm (using disk-based inverted lists)

MINDIST(q,Rij) < dk, we add Rij into the candidate-region

set CRi
(line 8). Finally we sort the regions in CRi

based on

the MINDIST function in ascending order (line 9).

Next we discuss how to compute the candidate POIs in Rij .

Function FINDCANDPOIS gives the pseudo-code (Figure 9).

If the POI inverted lists are in memory, we directly compute

l

u

i i-

i

i

Ri

Ri

Fig. 10. Pruning for [π
2
≤ α < β < π]

l

u

i i-

Ri

Ri

i

i

Fig. 11. Pruning for [π ≤ α < β < 3π
2
]

ii-

i

i

l

u

Ri

Ri

Fig. 12. Pruning for [3π
2

≤ α < β < 2π]

their intersection. If the POI inverted lists are on disk, we load

the POI inverted lists for each keyword. Note that for ki we

only load POIs that are inRij , LPki
(Rij), based on the pointers

in region lists as shown in Figure 1 (line 2). Then we compute

the intersection of POI lists LPK = ∩ki∈KL
P
ki
(Rij)(line 3). For

p∈LPK, if α≤θ(q, p)≤β and dist(q, p)<dk, p is a candidate.

We add p into the priority queue and update dk(line 6).

B. Answering Queries with Any Direction

In this section, we discuss how to answer a query with

arbitrary directions. We first classify queries into basic queries

and complex queries as follows.

• Case 1 – Basic Queries:

– 0 ≤ α ≤ β ≤ π
2 . We answer it using the index

structures on Obl as discussed in the above sections.

– π
2 ≤ α ≤ β ≤ π. We answer it using the index

structures on Obr, which is similar to answer a query

with 0 ≤ α ≤ β ≤ π
2 as shown in Figure 10.

– π ≤ α ≤ β ≤ 3π
2 . We answer it using the index

structures on Otr, which is similar to answer a query

with 0 ≤ α ≤ β ≤ π
2 as shown in Figure 11.

– 3π
2 ≤ α ≤ β ≤ 2π. We answer it using the index

structures on Otl, which is similar to answer a query

with 0 ≤ α ≤ β ≤ π
2 as shown in Figure 12.

• Case 2 – Complex Queries: All other queries are called

complex queries. For a complex query q with direction

[α, β], we decompose q into at most four basic queries:

(1) q1 with direction [0, π2)∩ [α, β]; (2) q2 with direction

[π2 , π)∩ [α, β]; (3) q3 with direction [π, 3π
2)∩ [α, β]; and

(4) q4 with direction [3π2 , 2π) ∩ [α, β]. Thus we can first

answer the sub-queries and then combine the results to

generate the final answers of query q. §

A straightforward method to answer a complex query first

decomposes it into basic sub-queries and then computes k
nearest neighbors for each basic query. Finally it finds the real

k nearest neighbors by combing the results of each basic query.

However this method is very expensive as some sub-queries

may have no real answers and we do not need to answer such

sub-queries. To this end, we propose an efficient algorithm by

pruning many unnecessary POIs. For each basic query, we first

compute their candidate regions. Then we sort the candidate

regions based on their MINDIST values. Next we access the

§We use α ∈ [0, 2π) and β ≤ α+2π to denote any direction. If β > 2π,
we decompose the direction to [α, 2π) and [2π, β] = [0, β − 2π]. Then we
decompose them to basic queries and generate at most five sub-queries.

Algorithm 2: DESKS (P , q)

Input: P : A collection of POIs

q = 〈(q.x, q.y); [α, β];K, k〉: A query

Output: Pk
q = {p|p ∈ Pq and p is a knn of q}, where Pq

is the set of POIs in the search direction that

contain all the keywords in K.

begin1

Initialize an empty priority queue QP for POIs;2

Let dk denote the k-th small distance in QP ;3

Initialize an empty priority queue QR for regions;4

Decompose q into q1, q2, · · · , q4; /*some may be empty*/5

for 1 ≤ s ≤ 4 do6

Locate region Ris for qs where qs appears;7

add Ris into QR;8

while QR 6= φ do9

Get region Rim with minimal MINDIST(q,Rim);10

if MINDIST(q,Rim) ≥ dk then return;11

else CRim
=FINDCANDREGIONS(q, Rim , dk);12

for Rim
j
∈ CRim

do13

if MINDIST(q,Rim
j
) ≥ dk then break;14

else FINDCANDPOIS(q, Rim , dk, QP) ;15

Pop Rim from QR;16

if MINDIST(q,Rim+1) < dk then17

add Rim+1 into QR;18

end19

Fig. 13. DESKS algorithm (using disk-based inverted lists)

candidate regions in order and prune unnecessary regions. The

pseudo-code of the algorithm is shown in Figure 13.

We maintain two priority queues: QP for candidate POIs

(line 2) and QR for regions (line 4). We first decompose the

query into at most four sub-queries (line 5). Then for each

sub-query qs, we locate which region qs appears (line 7) and

add the region Ris into region queue QR (line 8). Then we

find region Rim with the minimal MINDIST value in QR

(line 10). If MINDIST(q,Rim) ≥ dk, we terminate as we

have found k nearest neighbors (line 11); otherwise we find

candidate regions in Rim , CRim
(line 12). For each candidate

region Rim
j
∈ CRim

, if MINDIST(q,Rim
j
) ≥ dk, we break

as there is no answer in Rim
j
· · ·Rim

M
(line 14); otherwise,

we compute candidate POIs in Rim
j

(line 15). Next we pop

Rim from QR. For the next region Rim+1 after Rim , if

MINDIST(q,Rim+1) < dk, we add it into region queue QR

(line 18). Iteratively we can find all answers of query q.

V. INCREMENTAL SEARCH ALGORITHMS

Mobilephone users will dynamically change directions if

they cannot find expected answers in the current direction.

A naive method is to answer a new query from scratch.

However this method is very expensive. To address this issue,

we propose to incrementally answer a query based on the

cached results of previously issued queries. To avoid involving

huge space, we only cache k nearest neighbors for a query.

We consider the following two cases to update a direction¶.

Case 1: The user increases a direction from [α, β] to [α′ <
α, β′ > β]. This corresponds to the case that the user increases

the direction using two fingers on the mobilephone screen.

Section V-A discusses how to answer such a query efficiently.

Case 2: The user moves the direction from [α, β] to [α +
δθ, β+ δθ]. This corresponds to the case that the user changes

the direction by moving the mobilephone direction. Section V-

B discusses how to answer such a query efficiently.

Note that our method can support any direction-update

queries using these two operations.

A. Increasing The Direction

Suppose a user has issued a query q with direction [α, β]
and then the user issues a new query q′ by increasing the

direction to [α′ < α, β′ > β]. We use the cached results

of q to answer this new query q′ as follows. Obviously, an

answer of q must be an answer of q′. Let d′k(dk) denote the

k-th smallest distance of nearest neighbors to query q′(q). We

have d′k ≤ dk. Thus we can use dk as an upper bound.

We insert k nearest neighbors of q into the priority queue

of q′. Then we decompose q′ into three queries, q1[α
′, α],

q2[β, β
′], and q[α, β]. We only need to answer q1 and q2

with bound dk. We answer the two queries simultaneously as

answering sub-queries in Section IV-B. Note that in the two

new directions, if there is a POI p (or regionRij) with distance

to q larger than dk, we prune p (or region Rij); otherwise we

insert it into the priority queue (or access the region). Thus

we can incrementally and efficiently answer query q′.

B. Moving The Direction

Suppose a user has issued a query q with direction [α, β] and

then the user issues a new query q′ by moving the direction

to [α+ δθ, β+ δθ]. Firstly consider δθ > 0. If α+δθ>β, q and

q′ have no overlapped direction and we answer the new query

from scratch. On the contrary, q and q′ have an overlapped

direction [α+ δθ, β]. We examine each k nearest neighbors of

q, and if it is in [α+δθ, β], we insert it into the priority queue

of query q′ and update the k-th smallest threshold d′k. Then we

answer the new query with direction [β, β+δθ] using threshold

d′k. If we find k answers in the priority queue or in direction

[β, β + δθ] within distance dk, we do not need to access

regions in direction [α+ δθ, β]; otherwise, we need to access

those regions in direction [α+δθ, β] with MINDIST values no

smaller than dk. Thus we can use the bound d′k to do effective

¶In this paper we do not consider moving queries (changing locations).

pruning. Similarly if δθ<0 and β+δθ>α, we can use the above

method to answer query q′ with direction [α+δθ, α]. Thus we

can incrementally and efficiently answer query q′.

VI. EXPERIMENTAL STUDY

We have implemented our proposed methods. We com-

pared with two state-of-the-art methods MIR
2-tree [6] and

LkT [5]‖. We extended their methods to support direction-

aware search by examining whether each accessed MBR (or

POI) is in search direction. For LkT, we got the codes from

the authors [5] which were implemented in Java. For MIR
2-

tree, we implemented it in C++. Our algorithms were also

implemented in C++. All the C++ codes were compiled using

GCC 4.2.3 with -O3 flag. As the baseline algorithms used

disk-based indexes, we also used disk-based index structure.

All the experiments were run on a Ubuntu machine with an

Intel Core E5450 3.0GHz CPU and 4 GB memory.

We used three real datasets, POIs in California(CA), POIs

in Virginia(VA), and POIs in China(CN). The statistics of the

datasets was summarized in Table II. We generated five query

sets with keyword numbers from 1 to 5 and each query set

had 1000 queries. TABLE II

DATASETS.

CA VA CN

Total number of POIs (millions) 0.91 0.96 16.5

Total number of terms (millions) 9.7 4.6 63.6

Total number of unique terms (thousands) 35 26 753

Average number of unique terms per POI 8.57 4.5 3.85

A. Varying M and N

In this section, we evaluate the effect on varying region

number N and sub-region number M . Figure 14 shows the

results. We see that different values of N and M had no

significant effect on the performance for M > 50. On

the VA dataset, the running time was about 2.3-2.7 ms on

every combinations of M and N , and we got the highest

performance at N=100 and M=150. On the CA dataset, the

running time was 11-15 ms for different M and N values,

and we got the highest performance at N=100 and M=150.

On the CN dataset, the time was about 9-16 ms. The highest

performance was achieved at N=1000 and M = 600. Based

on the results, we had a conclusion that each region Ri was

better to contain 10, 000 POIs and each sub-region Rij was

better to contain 100 POIs. In the reminder experiments, we

used N=100 and M=150 on the CA and VA datasets, and

N=1000 and M=600 on the CN dataset.

B. Evaluation on Pruning Techniques

In this section, we evaluate our pruning techniques. We im-

plemented three methods. (1) DESKS+R: We used the region-

pruning techniques and function MINDIST(q,Ri) to pruneRi.

(2) DESKS+D: We used the direction-pruning techniques and

function MINDIST(q,Rij) to prune Rij . (3) DESKS+RD: We

used both region pruning and direction pruning.

Varying k: We first evaluated the pruning techniques by

varying k on the 5000 queries and α=0, β=π
3 . Figure 15 shows

‖As MIR
2-tree generally achieves much higher performance than IR

2-
tree, we do not report results for IR2-tree.

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 50 100 150 200 250
E

la
p

s
e

d
 T

im
e

 (
m

s
)

N

M= 50
M=100
M=150

M=200
M=250

(a) VA

 10

 11

 12

 13

 14

 15

 16

 17

 50 100 150 200 250

E
la

p
s
e

d
 T

im
e

 (
m

s
)

N

M= 50
M=100
M=150

M=200
M=250

(b) CA

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 200 400 600 800 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

N

M= 200
M= 400
M= 600
M= 800
M=1000

(c) CN
Fig. 14. Average search performance: Varying M and N (5000 queries, k = 10, α = 0, β = π

3
)

 0

 10

 20

 30

 40

 50

 60

1 5 10 20 50 100

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Top-k

Desks+R
Desks+D

Desks+RD

(a) VA

 0

 10

 20

 30

 40

 50

1 5 10 20 50 100

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Top-k

Desks+R
Desks+D

Desks+RD

(b) CA

 0

 10

 20

 30

 40

 50

 60

1 5 10 20 50 100

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Top-k

Desks+R
Desks+D

Desks+RD

(c) CN
Fig. 15. Average search performance: Varying k (5000 queries, α = 0, β = π

3
)

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Directions (* π/6)

Desks+R
Desks+D

Desks+RD

(a) VA

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Directions (* π/6)

Desks+R
Desks+D

Desks+RD

(b) CA

 0

 50

 100

 150

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Directions (* π/6)

Desks+R
Desks+D

Desks+RD

(c) CN
Fig. 16. Average search performance: Varying directions β − α from π

6
to 2π (5000 queries, k = 10)

the results. We can see that DESKS+D and DESKS+RD sig-

nificantly outperformed DESKS+R. This is because DESKS+R

needed to access many unnecessary regions and the direction-

based pruning can prune large numbers of unnecessary re-

gions. DESKS+RD was also better than DESKS+D, especially

on the CN dataset. This is because DESKS+RD can prune

many regions Ri. For example, on the CN dataset, for k=100,

DESKS+R took 55 ms, DESKS+D improved it to 32 ms, and

DESKS+RD further improved it to 16 ms. There are two

reasons that the improvement of DESKS+RD over DESKS+D

was not significant on the CA and VA datasets. Firstly, there

were small numbers of POIs that contain all keywords. Both

DESKS+D and DESKS+RD needed to access many regions.

Secondly, there were small numbers of regions (Ri). As

N=100, DESKS+RD cannot prune large numbers of regions.

Varying directions: We evaluated the pruning techniques

by varying directions on 5000 queries and k = 10. Fig-

ure 16 shows the results. Similarly DESKS+D and DESKS+RD

significantly outperformed DESKS+R. On the VA dataset,

DESKS+R took more than 20 ms to answer a query, and

DESKS+D and DESKS+RD only took about 2 ms. This

is because DESKS+R needed to enumerate many regions

while DESKS+D and DESKS+RD can prune large numbers

of regions based on the direction-aware indexes.

C. Comparison with Existing Methods

We compared our algorithm DESKS (DESKS+RD) with

state-of-the-art methods MIR
2-tree and LkT. We first com-

pared the index sizes and time as shown in Table III. LkT

TABLE III

INDEXING TIME AND SIZES.

Data Sizes(MB)
Index Sizes (MB) Index Time (Minutes)

MIR
2-tree LkT DESKS MIR

2-tree LkT DESKS

CA 72.2 72 1430 265 1.3 780 1.8

VA 54.8 76 920 149 0.8 690 1.2

CN 805 1304 – 3552 25 – 33

was very expensive to build indexes as it needed to cluster

keywords in POIs. On the CN dataset, it took more than 2

days to index 1 million POIs, and it will take 1 month to

index 16 million POIs. Thus we did not show the results on

the CN dataset. MIR2-tree used R-tree and keyword signatures

to build indexes. Although DESKS had larger index sizes than

MIR
2-tree (as DESKS built indexes for Obl, Obr , Otr, Otl),

DESKS still had acceptable index sizes. LkT had much larger

index sizes as it built inverted lists for each R-tree node.

Varying directions: We first compared different methods by

varying directions on 5000 queries and k = 10. Figure 17

shows the results. Although LkT and MIR
2-tree achieved high

performance for large directions, they were very slow for small

directions. This is because they needed to enumerate many

MBRs and POIs, which was very expensive. For example, on

the CA dataset, they took 200 ms for direction 2π, but took

more than 5 seconds for direction π
3 . DESKS only took 20

ms for any direction, since DESKS can use the index to do

effective direction pruning. Even for the direction with 2π,

DESKS still outperformed existing methods. There are three

reasons. Firstly, our region structure is very effective and can

be in memory. Secondly, our region inverted lists can prune

many unnecessary POIs. Thirdly, existing methods usually

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Directions (* π/6)

LkT
MIR

2
-Tree

Desks

(a) VA

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Directions (* π/6)

LkT
MIR

2
-Tree

Desks

(b) CA

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Directions (* π/6)

MIR
2
-Tree

Desks

(c) CN
Fig. 17. Performance comparison: Varying directions β − α from π

6
to 2π (5000 queries, k = 10)

 1

 10

 100

 1000

1 5 10 20 50 100

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Top-k

LkT
MIR

2
-Tree

Desks

(a) VA

 1

 10

 100

 1000

 10000

1 5 10 20 50 100

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Top-k

LkT
MIR

2
-Tree

Desks

(b) CA

 1

 10

 100

 1000

 10000

1 5 10 20 50 100

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Top-k

MIR
2
-Tree

Desks

(c) CN
Fig. 18. Performance comparison: Varying k (5000 queries, α = 0, β = π

3
)

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Keywords

LkT
MIR

2
-Tree

Desks

(a) VA

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Keywords

LkT
MIR

2
-Tree

Desks

(b) CA

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Keywords

MIR
2
-Tree

Desks

(c) CN
Fig. 19. Performance comparison: Varying numbers of keywords (1000 queries in each query set, k = 10, α = 0, β = π

3
)

achieved high performance for POIs with many keywords

(documents) [5]. However real POIs have no many keywords.

Varying k: Then we compared different methods by varying

k on 5000 queries and α = 0, β = π
3 . Figure 18 shows the

results. We can see that DESKS significantly outperformed

MIR
2-tree and LkT, even in 2-3 orders of magnitude. On the

VA dataset, MIR2-tree and LkT took about 500 ms, and DESKS

improved the time to 2-5 ms. The main reason is that existing

methods cannot use the index to do effective direction pruning.

DESKS used the novel direction-aware index which can prune

large numbers of unnecessary regions and POIs.

Varying the number of keywords: Next we compared

different methods by varying keyword numbers and setting

k = 10 and α = 0, β = π
3 . Figure 19 shows the results.

We can see that for different numbers of keywords, DESKS

was still much better than MIR
2-tree and LkT. For different

numbers of keywords, DESKS only took about 10-20 ms.

D. Evaluation on Incremental Search

In this section, we test our incremental search method. We

first initialized queries with β−α=π
3 and then increased direc-

tions by π
36 , · · · ,

12π
36 . Figure 20(a) shows the results. We can

see that our incremental method DESKS-INCRE outperformed

DESKS. This is because DESKS-INCRE can incrementally

answer a query using the previously issued queries. We also

evaluated DESKS-INCRE by moving directions. Figure 20(b)

shows the results. We still initialized queries with β−α=π
3

and then moved the directions by −6π
36 , · · · , 6π

36 . We can see

that for a small direction, DESKS-INCRE was much better than

DESKS, as DESKS-INCRE can use a tighter bound to answer

new queries. For a large direction, the improvement was not

high as DESKS-INCRE needed to answer queries from scratch.

E. Scalability

In this section, we evaluate the scalability on the CN dataset

by varying numbers of POIs. Figure 21 shows the results with

different k values and directions. We can see that our method

scaled very well. This is contributed to our effective direction-

aware index structures and effective pruning techniques.

VII. RELATED WORK

Many studies on spatial keyword search have been proposed

recently [25], [3], [9], [6], [23], [5], [24], [22], [1], [21], [2],

[19], [13]. The most related work to our problem is the study

by Felipe et al. [6], which proposed the index structures by

integrating signature files and R-tree to enable top-k spatial

keyword queries. Another similar study [5] is provided by

Cong et al., which combined inverted files and R-tree to

answer the location-aware top-k text retrieval (LkT) query.

Our direction-aware spatial keyword query is different from

their methods as we have a direction constraint.

Zhou et al. [25] proposed to find web documents relevant

to user input keywords within a pre-specified region. They

developed several methods by combining R-tree and inverted

indexes. Chen et al. [3] extended this problem by supporting

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Directions (* π/36)

Desks
Desks-Incre

(a) Increasing directions

 4

 5

 6

 7

 8

 9

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Directions (* π/36)

Desks
Desks-Incre

(b) Moving directions
Fig. 20. Incremental Search on the CN dataset (k = 10)

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of POIs (* million)

k=100
k= 50
k= 20
k= 10
k= 1

(a) Varying k (β − α = π

3
)

 0

 10

 20

 30

 40

 2 4 6 8 10 12 14 16

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of POIs (* million)

2π

5π/3
4π/3

π

2π/3
π/3

(b) Varying directions (k = 10)
Fig. 21. Scalability on the CN dataset

large numbers of “footprint representations.” Hariharan et

al. [9] focused on finding objects containing a set of key-

words within a specific region. They proposed a hybrid index

structures by integrating R-tree and inverted lists. Zhang et

al. [23], [24] introduced the m-closest keyword query (mCK

query) which aims at finding the closest objects that match

keywords. Cong et al. [1] studied how to find top-k prestige-

based relevant spatial web objects. Yao et al. [22] tackled

the problem of answering approximate string match queries

in spatial databases. Wu et al. [21] studied spatial keyword

search for moving objects. Lu et al. [13] extended reversed

knn techniques to support reverse spatial and textual k nearest

neighbor search. Roy and Chakrabarti [19] studied type-ahead

search in spatial databases using materialization techniques.

Cao et al. [2] studied collective keyword search by considering

multiple points. Leung et al. [12] proposed to use locations for

personalized search. Obviously the above queries substantially

differ from our direction-aware spatial keyword query.

There are many studies on knn [18], [16], [10], [11], [20],

[17]. Ferhatosmanoglu et al. [7] studied constrained nearest

neighbor search using polygon as a constraint. Cheng et al. [4]

studied constrained knn queries over uncertain data. Gao et

al. [8] and Nutanong et al. [14] proposed to answer visible

knn queries. Patroumpas et al. [15] studied the problem of

monitoring object orientations. However their methods cannot

support our problem as we support keyword-based search. We

consider direction constraint which is different from theirs.

Although we can build two separate indexes, one for key-

words and another for locations, this method is expensive, as

it cannot simultaneously apply textual and spatial pruning.

VIII. CONCLUSION

In this paper we have studied the problem of direction-

aware spatial keyword search. We find the k nearest neighbors

to the query that contain all input keywords and satisfy the

direction constraint. To efficiently answer a direction-aware

spatial keyword query, we proposed novel indexing structures,

which can prune large number of unnecessary POIs. We

developed effective region-based pruning and direction-based

pruning techniques to increase the search performance. We

devised efficient algorithms to answer direction-aware spatial

keyword queries. We also studied how to incrementally answer

a query. We have implemented our algorithms, and experimen-

tal results show that our method achieves high performance

and outperforms existing methods significantly.

IX. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and suggestions. This work was partly
supported by the National Natural Science Foundation of China under

Grant No. 61003004 and 60873065, National Grand Fundamental Re-
search 973 Program of China under Grant No. 2011CB302206, Na-
tional S&T Major Project of China under Grant No. 2011ZX01042-
001-002, and “NExT Research Center” funded by MDA, Singapore,
under Grant No. WBS:R-252-300-001-490.

REFERENCES

[1] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. PVLDB, 3(1):373–384, 2010.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword
querying. In SIGMOD Conference, pages 373–384, 2011.

[3] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD Conference, pages 277–
288, 2006.

[4] R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. Probabilistic
verifiers: Evaluating constrained nearest-neighbor queries over uncertain
data. In ICDE, pages 973–982, 2008.

[5] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. PVLDB, 2009.

[6] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, 2008.

[7] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Con-
strained nearest neighbor queries. In SSTD, pages 257–278, 2001.

[8] Y. Gao, B. Zheng, W.-C. Lee, and G. Chen. Continuous visible nearest
neighbor queries. In EDBT, pages 144–155, 2009.

[9] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-
keyword (SK) queries in geographic information retrieval (GIR) systems.
In SSDBM, 2007.

[10] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM Trans. Database Syst., 1999.

[11] M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In VLDB, pages 840–851, 2004.

[12] K. W.-T. Leung, D. L. Lee, and W.-C. Lee. Personalized web search
with location preferences. In ICDE, pages 701–712, 2010.

[13] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest neighbor
search. In SIGMOD Conference, pages 349–360, 2011.

[14] S. Nutanong, E. Tanin, and R. Zhang. Visible nearest neighbor queries.
In DASFAA, pages 876–883, 2007.

[15] K. Patroumpas and T. K. Sellis. Monitoring orientation of moving
objects around focal points. In SSTD, pages 228–246, 2009.

[16] S. Pramanik and J. Li. Fast approximate search algorithm for nearest
neighbor queries in high dimensions. In ICDE, page 251, 1999.

[17] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg. Efficient
processing of top-k spatial preference queries. PVLDB, 4(2):93–104,
2010.

[18] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD Conference, 1995.

[19] S. B. Roy and K. Chakrabarti. Location-aware type ahead search on
spatial databases: semantics and efficiency. In SIGMOD Conference,
pages 361–372, 2011.

[20] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.
In VLDB, pages 287–298, 2002.

[21] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, pages 541–
552, 2011.

[22] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate string
search in spatial databases. In ICDE, 2010.

[23] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by document.
In ICDE, 2009.

[24] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pages 521–532, 2010.

[25] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, 2005.

