
S3 : An Efficient Shared Scan Scheduler on MapReduce Framework

Lei Shi, Xiaohui Li, Kian-Lee Tan

School of Computing
National University of Singapore

{shilei, lixiaohui, tankl}@comp.nus.edu.sg

Abstract—Hadoop, an open-source implementation of Map-
Reduce, has been widely used for data-intensive computing.
In order to improve performance, multiple jobs operating on
a common data file can be processed as a batch to eliminate
redundant scanning. However, in practice, jobs often do not
arrive at the same time, and batching them means longer
waiting time for jobs that arrive earlier. In this paper, we
propose S3 – a novel Shared Scan Scheduler for Hadoop –
which allows sharing the scan of a common file for multiple
jobs that may arrive at different time. Under S3 , a job is split
into a sequence of (independent) sub-jobs, each operating on a
different portion of the data file; moreover, multiple sub-jobs
(from different jobs) that access a common portion of a data
file can be processed as a batch to share the scan of the accessed
data. S3 operates as follows: at any time, the system may be
processing a batch of sub-jobs (that access the same portion
of data); at the same time, there are sub-jobs waiting in a job
queue; as a new job arrives, its sub-jobs can be aligned with
the waiting jobs in the queue; once the current batch of sub-
jobs completes processing, the next batch of sub-jobs (which
may include sub-jobs from newly arrived jobs) can be initiated
for processing. In this way, an arriving job does not need to
wait for a long time to be processed. We have implemented
our S3 approach in Hadoop, and our experimental results on
a cluster of over 40 nodes show that S3 outperforms the naı̈ve
no-sharing scheme and the file-based shared-scan approach.

I. INTRODUCTION

The increasing demand for large-scale data analysis is

attracting both industry and academia to design new data-

intensive computing platforms which are scalable and effi-

cient. Google’s MapReduce [1] is one such platform that

has been well recognized for its high scalability, flexible

elasticity and fine-grained fault tolerance. Currently, there

are a number of MapReduce-based systems [2], [3], [4], [5]

with Hadoop [2] being one of the most popular and widely

used systems in both research and production.

The essence of MapReduce lies in its ability to exploit

intra-job parallelism to reduce the total execution time of a

job. This is achieved by breaking a single job into multiple

tasks that run concurrently on several processing nodes.

Most of the existing work focused on intra-job parallelism

[6], [7]. Currently, MapReduce is not only suitable for

large batch jobs, but it has also been adopted as a shared

environment where multiple concurrent jobs are running. For

example, it is reported that a deployment of a Hadoop cluster

with 2,250 nodes, on which 25,000 MapReduce jobs are

running every day [8]. To handle a large number of jobs

efficiently, it becomes necessary to explore beyond intra-job

parallelism. In particular, there is a need to develop novel

mechanisms to exploit inter-job parallelism in MapReduce.

To support inter-job parallelism, existing efforts have fo-

cused on resource-sharing-based job scheduling mechanisms

[9], [10]. In particular, there are two categories of resource

sharing in the MapReduce framework:

In the first category, multiple jobs can share the computing

resources (CPU time, memory, disk storage, etc.) of a

MapReduce cluster. As an example, a Hadoop cluster can

be divided into multiple partitions, each with a subset of the

processing nodes and a dedicated job queue to manage the

submitted jobs. Inter-job parallelism is realized by allocating

jobs to these partitions to be processed independently and

concurrently. Yahoo!’s capacity scheduler1 and Facebook’s

fair scheduler2 are examples of this strategy. While this

approach can facilitate inter-job parallelism, it is difficult

to optimally and dynamically split a cluster into multiple

partitions and allocate jobs to these partitions. As such,

existing systems pre-determine the number of nodes to be

assigned to each partition/job, which may result in sub-

optimal performance.

In the second category, inter-job parallelism is exploited

by taking advantage of the common processing that may be

shared by multiple jobs. For example, if multiple jobs access

the same file, then it makes sense to access the file once for

all such jobs. Nykiel et al. identified several opportunities

of sharing for MapReduce jobs including scans, map output,

and map functions, and then proposed MRShare, a strategy

that batches a number of jobs that access a single file and

processes the entire batch at the same time [11]. To our

knowledge, MRShare is currently the state-of-the-art for

salvaging common processing in MapReduce jobs. However,

its effectiveness comes from batching a number of jobs

in advance. Batching multiple jobs allows the entire batch

of jobs to be analyzed to maximize the degree of resource

sharing so that they can be processed optimally to minimize

resource consumption. Unfortunately, in practice, jobs are

not always submitted at the same time. This means that

1http://hadoop.apache.org/mapreduce/docs/r0.21.0/capacity scheduler.html
2http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair scheduler.html

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.42

325

jobs submitted earlier will have to wait for a certain amount

of time for other jobs to be submitted before an effective

batch can be obtained. While this may be fine for non-critical

jobs, it may not be desirable when users would like to see

their results sooner. Thus, it would be both beneficial and

attractive to design new mechanisms that exploit common
processing while keeping a low waiting time.

In this paper, we propose S3 – a novel Shared Scan

Scheduler for Hadoop – that shares the scanning of a

common file for multiple jobs. Unlike MRShare, S3 is

designed to cater to jobs that arrive at different time, and

to process them as early as possible. In S3 , when a job

is submitted, it will be divided into a sequence of sub-

jobs. A sub-job, as an exclusive partition of the original

job, contains the exact amount of work that utilizes the

entire cluster resources for one round of execution (i.e., the

number of sub-jobs corresponds to the number of rounds

required to complete the job). If a job is submitted when

the cluster is idle, its first sub-job is initiated, while the

remaining sub-jobs wait in a job queue. With the current sub-

job being processed, if a new job (that shares the common

input with the ongoing job) is submitted, S3 “aligns” the

newly created sub-jobs with waiting sub-jobs in the queue

- a newly created sub-job is batched together with waiting

sub-jobs that access the same portion of data. When the

running sub-job completes, a batch of two sub-jobs will be

launched and processed. In this way, the newly arrived job

not only starts processing earlier (and hence incurs a short

waiting time), sub-jobs that access the same portion of data

can share a single scan of the data (and hence reduces the

I/O cost). Thus, the performance of the overall system can

be improved. This process of “job arrival, sub-job alignment,

and batching of sub-jobs for processing” is repeated as new

jobs arrive. We note that the batch size changes as jobs

complete and new jobs arrive.

To facilitate shared processing and alignment of sub-jobs,

on the storage level, a file is organized into several segments,

each of which is a set of data blocks that can be processed

in one sub-job. Unlike existing works that require a file

to be scanned from its beginning, S3 allows a job to be

scheduled for processing from any segment. As an example,

suppose there are k segments {S1, S2, . . . , Sk}, if a job starts

processing at segment Sj , it will then process the segments

in the following order: Sj , Sj+1, . . . , Sk, S1, . . . , Sj−1. This

enables sub-jobs of arriving jobs to be aligned with waiting

jobs easily.

We have implemented S3 as a plugin scheduler for

Hadoop. It is light-weight, and can be easily integrated

into any other MapReduce framework in a non-intrusive

fashion. For our experimental study, we use Hadoop as our

MapReduce platform, and conducted extensive performance

study on a cluster of over 40 nodes. Our results show that

S3 outperforms the naı̈ve no-sharing scheme and a file-based

shared-scan approach adapted from MRShare.

The rest of the paper is organized as follows: Section II

discussed the related work that has been done on MapReduce

resource sharing. In Section III, we provide an overview of

our proposed S3 scheduler. Sections IV presents the details

of S3 scheme, and Section V shows the experimental results.

Section VI concludes the paper.

II. RELATED WORK

In this section, we briefly introduce the MapReduce

framework and its related sharing mechanisms.

A. MapReduce

MapReduce is proposed by Google as a programming

model and an associated implementation for large-scale data

processing [1]. It adopts a master/slave architecture - a

master node manages and monitors the execution of jobs,

and slave nodes perform the tasks assigned by the master

node. The input files are split into fix-sized data blocks

(by default each block is 64 MB) which the master node

assigns to idle slave nodes for processing. Each slave node

has a fixed number of map slots and reduce slots, denoting

its computing capacity. Job scheduling is performed at the

master node, according to the periodic reports of the number

of free map and reduce slots at each slave node.

To use Hadoop, users simply describe their processing

logic by specifying a customized map() and reduce()
function. The map() function performs the desired filtering

or transformation logic on each record (key-value pair) in the

dataset, and produces a list of intermediate records; and the

reduce() function merges all intermediate records with

the same key. The MapReduce framework automatically

handles job scheduling, data replication, fault tolerance,

network communication and other details.

B. Existing MapReduce Schedulers

According to resource utilization, current MapReduce

schedulers3 can be classified into two categories: (a) full

utilization to maximize the use of resources; (b) partial

utilization to enable concurrent processing.

Hadoop’s default scheduler falls into the first category.

It manages a FIFO queue for all submitted jobs based on

submission time or user-specified priority levels. All the

pending jobs are sorted according to their priorities, and

then by their submission time. Once a task slot becomes

available (e.g. a running job finishes all its map tasks and

starts reduce tasks), it will be assigned a task of the first

waiting job in the pending queue. This approach allows one

job to take all task slots within the cluster, i.e., no other

jobs can utilize the cluster until the current one completes.

Consequently, jobs that arrive at a later time or with a lower

priority will be blocked by those ahead in the queue4. Given

3We use the Hadoop’s scheduler as a representative of MapReduce
scheduling mechanisms.

4To be precise, the next job cannot start its map tasks until the current
job releases its map slots

326

the total number of jobs is large, there will be a significant

delay caused by FIFO scheduler.

More recently, alternative schedulers have been developed

to adopt partial utilization of resources. Examples of these

schedulers include Yahoo!’s capacity scheduler and Face-

book’s fair scheduler. Capacity scheduler manages multiple

queues/pools, each of which is guaranteed a fraction of

physical resources in the cluster. With these independent

fractions, more jobs can be concurrently executed. The fair

scheduler organizes jobs into multiple user pools, and each

pool shares the entire resources fairly. As a result, all running

jobs can get a fair share of the resources, and more jobs

can be processed at the same period of time. There are two

main disadvantages with these schedulers. First, since each

job is allocated less resources, its execution time will be

longer. Second, each job is still running independently. This

misses sharing opportunities that arise as a result of common

operations (e.g., multiple jobs scanning the same file).

C. MapReduce-based Resource Sharing Systems

Several systems have been designed to enable resource

sharing for MapReduce. Hadoop On Demand (HOD) [12]

and MRShare [11] are two representatives.

HOD provisions virtual Hadoop clusters over a large

physical cluster. It adopts Torque resource manager [13] for

node allocation. HOD allows an user to employ a common

file system distributed among all the nodes, but provides the

user with a private MapReduce cluster on his/her allocated

nodes. HOD splits the whole cluster into multiple private

clusters dedicated for each user, therefore more jobs can

be executed concurrently. However, since the file system is

shared, in practice, the allocated nodes may not contain the

required data; consequently, data locality is a big issue.

In MRShare, multiple jobs that share some operations

(e.g., share a file scan, map output, or map functions) are

merged into one group. The jobs within the group are then

analyzed to exploit these common operations to reduce the

processing cost. The entire group is then treated as a new

query to be executed. But this framework is based on the

assumption that all the query patterns are known, and jobs

are already grouped before the execution. This assumption

is not practical in most real-life workloads, where jobs may

arrive at any time, and job patterns are unknown in advance.

In these cases, jobs that are submitted earlier must wait for

subsequent jobs to be submitted before an effective group

can be obtained. While this may be suitable for some non-

critical applications, it may not be acceptable to users who

desire to have their answers sooner.

III. OVERVIEW

In this section, we first present our context for inter-

job parallelism in a MapReduce cluster. We also discuss

two performance metrics that can be used to measure the

effectiveness of algorithms for inter-job parallelism. Finally,

Job(Group) 1

Job(Group) 2

Job(Group) 3

(a) dense jobs

Job(Group) 1

Job(Group) 2

Job(Group) 3

(b) sparse jobs

Figure 1. Various job submission patterns

we give an overview of our proposed shared scan scheduler

and illustrate its effectiveness with an example.

A. Context

We focus on a sequence of n jobs that are submit-

ted to a MapReduce cluster at different time. Let J =
{J1, J2, . . . , Jn} denote such a sequence whose correspond-

ing arrival time is given by T = {t1, t2, . . . tn}. For

simplicity we assume that job Ji is submitted before job

Jj for i < j, i.e., ti < tj .

The degree of sharing scan is dependent on both the job

types in J and the job arrival patterns in T . As a start, we

focus on I/O-intensive jobs to allow us to investigate the

effect of varying job arrival patterns. Moreover, we restrict

our discussion to jobs that operate on a single input file.

B. Performance Metrics

To measure the performance of various algorithms that

support inter-job parallelism, we consider the following two

performance metrics:

• Total execution time (TET): the time interval between

the first job’s submission and the last job’s completion.

• Average response time (ART): the average time in-

terval from each job’s submission to its completion.

TET and ART represent two different aspects of mea-

suring the performance of multiple resource-sharable jobs.

TET provides an insight on how much the processing

among the jobs is shared, while ART captures two com-

ponents - the waiting time which the (blocked) job

has to wait before being admitted for execution, and the

processing time which is the time needed to complete

the job. Suppose the execution time for each job is within

the same value range. A small value of TET reflects a high

degree of sharing, and a large value of TET means that the

processing fails to salvage common operations, if any. On

the other hand, a small value of ART means low waiting

time (i.e. jobs are processed soon after submission), and a

large ART is likely to be attributed to jobs being blocked.

Now, TET and ART are clearly influenced by the job ar-

rival patterns. Figure 1 depicts two different job submission

patterns - we refer to pattern (a) as a dense pattern, and

pattern (b) as a sparse pattern5. Clearly, dense job patterns

offer more opportunities for salvaging common operations,

e.g., more common data blocks of the jobs can be shared.

5We do not quantify the two relative concepts, because in practice sharing
opportunity varies in different workloads.

327

On the contrary, when the job arrival pattern is sparse, there

are fewer opportunities for exploiting inter-job parallelism.

In this paper, since we focus on I/O intensive jobs, we can

exploit shared scan to reduce the I/O operations of multiple

jobs that operate on the same input file. If the data can be

shared, both TET and ART can potentially be reduced, by

comparison to a non-sharing scheme.

Example 1. We shall first use a simple example to illustrate

how existing schemes perform in terms of these two metrics.

Suppose there are two jobs in J = {J1, J2} sharing the

same input data, with the arriving pattern T = {0, 20} (i.e.,

Job J2 arrives 20 seconds after job J1 is submitted). Suppose

each job takes 100 seconds to complete6. Since J2 arrives 20

seconds later, it means that J2 arrives when J1 has processed

20% of the data. First, let us consider Hadoop’s default

FIFO scheduler. Here, J2 must wait until J1 completes

its processing. In this case, TET (FIFO) = 200 sec, and

ART (FIFO) = 140 sec (J1 completes in 100 seconds,

but J2’s response time is 180 seconds as it has to wait 80

seconds for J1 to complete).

Next, let us consider MRShare that batches the two jobs.

Here, the TET (MRShare) = 120 sec (since J1 has to

wait for 20 seconds for J2 so that the two jobs can be

batch-processed, and the processing of the two batched jobs

take approximately 100 seconds assuming the overhead7

of processing the two jobs together is minimal), and the

ART (MRShare) = 110 sec (J1’s response time is 120

seconds, while that of J2 is 100 seconds).

Example 2. Now, continuing with Example 1, suppose

we have a sparse pattern, say J2 arriving 80 seconds

after J1. We will have TET (FIFO) = 200 sec,

ART (FIFO) = 110 sec, TET (MRShare) = 180 sec,

ART (MRShare) = 140 sec.

From the above examples, we can see that MRShare is

generally superior over FIFO in terms of TET , while its

effectiveness in terms of ART depends on the job arrival

patterns. In particular, the fact that it batches jobs (so that

the sharing is 100%) before they are processed increases the

waiting time of jobs that are submitted early, which may

result in high ART (this may not be attractive to users who

expect fast result generation).

Our challenge then is to develop a scheme that can keep

both TET and ART low.

C. The Big Picture

Here, we first give a brief picture of our proposed shared

scan scheduler, S3 , to demonstrate its benefits over existing

6Since the job is I/O bound, this time corresponds to the time to scan
the entire data.

7In practice, processing multiple jobs through shared-scan will introduce
extra overhead [11], which may result in a larger TET and ART . As we
shall see in our experimental study, the performance gain is sufficiently
significant.

schemes. We defer the detail discussion to the next section.

Our scheme is based on the observation that schemes like

FIFO and MRShare are restricted by a need to scan a

file from its beginning, e.g., in FIFO, jobs are processed

one after another, each time reading from the beginning of

the file; in MRShare, jobs need to be batched so that the

file can be read once from the beginning to process all jobs

within the batch. To improve performance (i.e., minimize

waiting time), our proposed S3 should allow a job to be

admitted for processing “as soon as it arrives”.

Example 3. Let us consider what happens when we adopt

S3 with our examples. With the same context as in Ex-

ample 1, under S3 , J1 is processed as soon as it arrives,

and as J2 arrives, its execution can start immediately. When

J2 is submitted 20 seconds after J1, J2 can only share the

remaining 80% of the data with J1. Note that this means

that J2 still needs to access the 20% of the data that is not

shared eventually. Thus, we have TET (S3) = 120 sec, and

ART (S3) = 100 sec. For Example 2 when J2 arrives 80

seconds after J1 arrives, we have TET (S3) = 180 seconds,

and ART (S3) = 100 seconds.

From the above examples, we can see the effectiveness

of our proposed S3 , which can keep both TET and ART
low, largely because it seeks shared processing among jobs,

at the same time minimizes the waiting time of each job.

However, for a scheduler like S3 to work, there are several

challenges to be addressed, including the followings:

1) How do we split a file so that it can be accessed from

“any where” rather than from the beginning?

2) How do we split a job into sub-jobs so that the job

can be processed “as soon as it arrives”?

3) How do we combine mutiple sub-jobs that access the

same portion of a file?

We discuss our solutions to these issues in the next

section.

IV. S3 : SHARED SCAN SCHEDULER

In this section, we present S3 , our shared scan scheduler

that exploits inter-job parallelism for multiple jobs that

may arrive at different time. We first present the system

architecture, and then the algorithms to realize S3 .

A. System Architecture

In current implementations of MapReduce such as

Hadoop, once a job is submitted, its corresponding tasks8

cannot be changed during the runtime. This makes it difficult

to dynamically combine jobs that have sharing opportu-

nities. Our goal is to enable dynamic shared processing

in MapReduce with minimal changes to it, so that the

generality of this popular system will not be lost. As such,

8In Hadoop, a job is split into tasks. In S3 , we can view a sub-job as a
set of MapReduce tasks.

328

���
�

�
� �� �

			

�� ����
�������

���	�����
���	�����
���	�����
���	�����

���	�����

���	�����

���	�����

�������
�� ��������������
�������	�

��	����
����

���������
��� ������

������
�	�

�������

�����
��!���

"���#������ #��� ����

$

���	����$

���	������

�	�

�� %��!������ &������

���
�������� �

��� �

���
�����

���
�����

���
�����

���
�����

���
����$

���
�����

���
�����

���
�����

���
�����

���
�����

���
����$

Figure 2. S3 Architecture

we propose the concepts of segment and sub-job, and

the corresponding implementation to facilitate our proposed

S3 scheme.

Figure 2 depicts the system architecture of S3 , which

consists of three major components: (a) Round-Robin Data

Scan; (b) Job Queue Manager; (c) Partial Job Initialization.

B. Round-Robin Data Scan

Let us begin by examining the distributed file system that

stores the data. As described earlier, S3 does not require a

job to start processing from the beginning of the file; instead,

a file can be accessed from “anywhere”. To facilitate this, we

break a file into segments, each segment containing several

successive blocks of data. In this way, a job can start from

the beginning of any segment. This significantly reduces the

waiting time (from that of waiting for the entire file to an

entire segment). This component answers the question raised

in Challenge 1 in Section III.

Suppose there are k segments, say S1, S2, . . . , Sk, and

each segment has m blocks. To fully utilize the nodes in a

cluster, the number of blocks per segment should be the same

as the number of concurrent map slots allowed in the cluster.

In this way, each map slot/task can be assigned one block

to process. Suppose a file has N blocks. Ideally, assuming

all nodes have the same processing speed, there will be k =
�N

m� segments.

To exploit sharing of segment scanning, S3 processes the

segments in a fixed order. For example, when a job is admit-

ted for processing at segment Sj , then it will access the file

in the following order: Sj , Sj+1, . . . , Sk, S1, S2, . . . Sj−1.

Logically, this approach forms a circular scan of the input

file, as depicted in Figure 2. In this figure, each segment

has 3 blocks. As jobs arrive periodically, they scan the data

in a round-robin manner. It looks as if the data is spinning

to provide service; and any job requiring the data can start

scanning from the next segment to be processed. Referring to

Figure 2, while Job 1 starts reading the file from segment 1,

Job 2 (which arrives later) begins only at segment 2 (which

starts reading from block 4). Job 2 completes its file access

when it eventually reads segment 1. This scanning scheme is

different from existing approaches, which typically require

an input file to be accessed from the beginning.

In distributed file systems that are used in MapReduce

platforms, e.g. [14], [15], the entire input data are split into a

chain of blocks, and each block is replicated and distributed

on some physical nodes. As a segment is a collection of data

blocks, we do not need to change the data storage in the file

system. Based on the segments, we know the positions of

the various blocks, and hence they can be readily accessed.

In our discussion, for simplicity we assume the processing

speed is the same among all nodes, and therefore the

segment size k can be pre-determined. However, in practice,

it is common that nodes have different processing speeds;

consequently, the execution time for each task varies. The

actual segment size may be different from the ideal value. S3

is aware of the runtime status on each node, and it optimizes

the overall performance by dynamically computing the seg-

ment size according to the available resources in the cluster,

and the corresponding batch of sub-jobs are then launched

[16]. In this way, sharing among different jobs is maximized

while all computation resources are fully utilized.

C. Job Queue Manager

A file is organized into segments at the storage level.

Correspondingly, at the execution level, a job is split into

329

sub-jobs. Given a k-segment file to be accessed, a job is split

into k sub-jobs where each sub-job processes one segment.
For jobs that arrive at different time, to exploit inter-

job parallelism, we “align” them at the sub-job level. In

other words, sub-jobs that access the same segment can be

processed concurrently and collectively to exploit one scan

of the segment. For example, in one iteration, all sub-jobs

that access segment S1 are processed together, in the next

iteration, all sub-jobs that access segment S2 are processed

together, and so on. Note that the number of sub-jobs to be

processed in each iteration varies as some jobs complete and

new jobs arrive.
The Job Queue Manager (JQM) is the component that

handles this task of merging sub-jobs. It maintains a Job

Queue that holds sub-jobs of existing jobs. When a new job

arrives, instead of being submitted to MapReduce directly, it

is divided into a sequence of sub-jobs and stored in the Job

Queue. JQM then analyzes the sub-jobs and aligns them with

the waiting sub-jobs in the Job Queue, so that all sub-jobs

that access the same segment can be batched together. JQM

organizes the batches based on running information retrieved

from the underlying MapReduce framework to dynamically

determine the set of sub-jobs to be batch-processed. When

the cluster becomes idle (existing running batches of sub-

jobs have completed), JQM launches the batch of sub-jobs

at the head of the Job Queue to MapReduce.

Algorithm 1 S3 Job Queue Manager

1: Let Segment be the next segment to be scheduled

2: Let JobQueue be {J1(ss1), J2(ss2), . . . , Jn(ssn)}
3: mergedSubjob ← batchSubJobs(JobQueue, Segment)

4: processNextSubJob(mergedSubJob, Segment)

5: for each job in JobQueue do
6: if job completes then
7: remove job from the queue

8: end if
9: end for

10: if Segment == k (assuming the file is split into k

segments) then
11: Segment ← 1

12: else
13: Segment ← Segment+1

14: end if

To better understand our solution, which effectively tack-

les Challenge 3, we use Algorithm 1 to give an algorithmic

description of the S3 Job Queue Manager. In line 1, we take

note of the next segment, Segment, to be scheduled for

processing. In line 2, we have the list of current jobs in the

queue. Job J1(ss1) denotes that job J1 started processing

from segment ss1 (to capture jobs that are admitted at

different time). Next (line 3), the jobs in the Job Queue

are analyzed to produce a merged sub-job that combines all

jobs that share segment Segment. The merged sub-job is

then submitted to the MapReduce engine to be processed

(line 4) - we defer this discussion to the next subsection.

In lines 5-9, jobs which have completed are then removed

from the job queue (these are jobs where Segment is the

last segment to be processed). Finally, in lines 10-11, if we

have reached the end of the file (assume to be segment k),

we shall begin scanning from the first segment; or else just

move to the next consecutive segment (line 13).

Example 4. Let us look at Figure 2. Here, we assume the

system has two jobs, and each sub-job consists of 3 tasks.

For example, sub-job 1 of Job 1 consists of Job1.Task1,

Job1.Task2 and Job1.Task3; sub-job 2 of Job 1 consists

of tasks Job1.Task4, Job1.Task5 and Job1.Task6. Similarly,

sub-job 1 of Job 2 consists of tasks Job2.Task1, Job2.Task2

and Job2.Task3. Initially, in the first iteration, Job 1 is the

only job in the system. As such, the first sub-job is the only

sub-job to be admitted to the system. In the next iteration,

Job 2 has arrived. Now the sub-job 2 of Job 1 and sub-job 1

of Job 2 can access the next segment together. Thus, the two

sub-jobs can be admitted as a batch.

D. Partial Job Initialization

In the original MapReduce framework, when a job is

submitted, it will be split into multiple tasks. If there is

an idle slave node, the master node will assign one new

task to it. When the slave finishes its assigned task, it

will communicate with the master node to request a new

task until all tasks are exhausted. The pending tasks are

maintained by the framework. As a result, it is difficult to

modify the tasks dynamically to support shared scan among

multiple jobs.

S3 scheduler handles this problem by submitting only one

merged sub-job to the MapReduce engine in each iteration

(this is the routine processNextSubJob in Algorithm 1). We

denote this approach as partial job initialization scheme.

Example 5. Referring to Example 4 and Figure 2. In the

first iteration, sub-job 1, which is the only job running,

consists of three tasks – Job1.Task1 accesses block 1,

Job1.Task2 accesses block 2 and Job1.Task3 accesses block

3. In the second iteration, sub-job 2 of Job 1 and sub-job 1

of Job 2 are processed together where blocks 4-6 can be

shared by the tasks of these sub-jobs, i.e., Job1.Task4 and

Job2.Task1 share block 4, and so forth.

To maximize the sharing among jobs while utilizing

as many resources as possible, several new features are

proposed in this partial job initialization component.

1) Periodical slot checking: As some nodes may be

slower in processing speeds, the completion time of the

assigned tasks may be longer than expected. If new tasks are

assigned to these nodes, they will be blocked for a relatively

long time. The segment size of a sub-job varies, depending

on the available processing slots in the cluster. To current

330

computation slots, S3 adopts a pro-active periodical slot

checking mechanism.

Based on a user-specified time interval, S3 collects the

information of job type, start time and current process on

each slave node, and estimates the completion time. The

information will be sent to the Job Queue Manager as

feedback (shown in Figure 2), where the segment size is

re-computed: if a node becomes slow, it will be excluded

from the available node list for next round of computation;

when it finishes the current task, it becomes free and will

be ready again for subsequent processing.

2) Dynamic sub-job adjustment: S3 handles jobs that

arrive at different time. It is possible that before the next

batch of sub-jobs is initialized for processing, another new

job arrives. Since the batches of sub-jobs are kept in the

Job Queue, it is easy to update them to incorporate the sub-

jobs of the newly arrived job. Moreover, if the slot checking

information is updated while the next batch of sub-jobs to

be processed is still waiting, the corresponding segment size

will be shrunk or extended to better utilize the resources in

the cluster. All the information is collected by the component

of partial job initialization and sent as feedback to the Job

Queue Manager.

3) Runtime sub-job initialization: The Partial Job Initial-

ization component lies in the MapReduce execution engine,

as the connection between the Job Queue Manager and the

underlying MapReduce system. When a batch of sub-jobs

is submitted from JQM, this component will decompose the

sub-jobs into their original MapReduce tasks and submit

them for execution. A sub-job is therefore processed as a

normal MapReduce job. The essence of MapReduce still

exists, because S3 hides its unique execution in the upper

level.

Partial job initialization is our solution in answer to

Challenge 2 in Section III.

V. EMPIRICAL EVALUATION

In this section, we present the experimental results of S3

scheduler. We conduct three categories of experiments to

investigate: 1) the effect of job arriving patterns; 2) various

workloads; 3) different block sizes. Additionally, we studied

the performance of S3 with both unstructured and structured

data.

A. Experiment Environment

We choose Hadoop as the target MapReduce system. As

Hadoop is the equivalent implementation of MapReduce, our

S3 scheduler can be easily extended to other MapReduce

systems. Hadoop 0.20.2 is used as the code base. All codes

are implemented in Java. Because the authors of MRShare
have not released the source code, we also implemented

MRShare approaches according to their paper. More im-

plementation details can be found in [16].

We conduct all of the experiments on a local cluster,

which consists of 1 master node and 40 slave nodes inter-

connected via a 1Gbps network. The cluster is organized in

three racks, each containing between 10 and 15 nodes. Each

node has Intel Xeon X3430 Quad Core CPU (2.4GHz), 8GB

memory, and 1TB hard disk.

We configure HDFS block size as 64MB (in Experi-

ment 3, we use 32MB, 64MB, and 128MB), and set the

data replication factor to 1. On each node, we configure

the number of map slots to one. Therefore, the maximum

number of concurrent map tasks are 40. The number of

reduce tasks is set to 30. We also disable the speculative

Map and Reduce tasks. The remaining Hadoop parameters

are set at their default values.

B. Workload Description

Currently, MapReduce-like systems are widely used for

both unstructured and structured data processing. To evaluate

the performance of S3 scheduler, we adopt two types of

workload: wordcount for unstructured data, and SQL-like

selection task for structured data.

The first workload is a set of wordcount jobs,

which are light-weight, I/O-dominant applications included

in Hadoop’s examples package. To produce different

wordcount jobs, we modified the original wordcount jobs

to count only the words that match a user-specified pattern.

By specifying various patterns, different jobs will perform

different processing based on the same input data.

We use text-format novels in Project Gutenberg9 as the

query dataset, and the total input size is 160GB (4GB/node).

We carefully select a set of jobs which have similar process-

ing logic with similar amount of map and reduce output, to

guarantee the jobs are within the same scale of workload.

We use two categories of workloads throughout the word-

count experiments:

1) Normal wordcount workload: with moderate amount

of outputs generated, this workload does not incur

a complex computation or a heavy traffic of data

shuffling within the network, which are the two main

factors that may offset the improvement gained by

shared scan. Table 1 describes the details of the

workload.

2) Heavy wordcount workload: a heavy workload gen-

erates 10 times more of the map output, and 200 times

more of the reduce output (in size), which expands the

processing load of each job. With the same 160GB

dataset, the average processing time for each job is

1.5 times slower than in the previous workload.

The second workload is a set of selection tasks, which are

SQL-like queries that select attributes from database tables.

Like the wordcount workload, we also used user-specified

selection conditions to distinguish different jobs. We use the

9http://www.gutenberg.org

331

Table I
WORDCOUNT DETAILS (NORMAL WORKLOAD)

Input Size 160GB (4GB per node)

Map Output Records ∼250 million
Reduce Output Records ∼60-80 thousand

Map Output Size ∼2.4GB
Reduce Output Size ∼1.5MB

Processing Time (avg) ∼240sec

lineitem table generated from the TPC-H benchmark as the

input, and we set the total input size as 400GB (10GB/node).

We compare the results of S3 with two schemes: naı̈ve

no-sharing scheme and file-based shared scan. For naı̈ve

no-sharing scheme, we choose the hadoop default FIFO
scheduler, and denote it as FIFO. For file-based shared scan,

we implemented the shared-scan scheme according to [11],

and denote it as MRShare.

C. Cost of Combined Job Processing

If multiple jobs share the same input data, they can

be combined to save the total execution time. However,

compared to a single job execution, the combined job will

increase the processing cost: a combined job does more

operations and generates larger output than a single job.

To understand the impact of job combination in the given

workload, we vary the number of jobs to be combined, n,

and record the total execution time, average map time, and

average reduce time. The maximum number of combined

jobs is set to 10. Figure 3 depicts the results on 160GB

wordcount dataset, which contains 2,560 map tasks and 30

reduce tasks. The x-axis is the number of combined jobs, and

y-axis depicts the processing time. Note that the n combined

jobs are submitted and processed together, so that the sharing

opportunity is maximized.

As expected, we observe an increasing trend in total

execution time when more jobs are combined. To process

a combination of 10 wordcount jobs takes 25.5% more total

execution time than processing one job, 28.8% more in map

time, and 23.5% more in reduce time. However, it is worth

noting that the additional overhead is acceptable (and not

significant) compared to the gain derived from an increase

in the number of combined jobs.

D. Experiments on Different Job Patterns

Combining jobs does not introduce significant overhead;

meanwhile, the total execution time of combining n jobs is

significantly less than a sequential processing. Consequently,

it makes sense to apply shared scan with the given workload.

However, different job arrival patterns may have different

impact on the performance. In the first experiment, we study

the performance of S3 with different job arriving patterns.

We show the results of two types of job arriving patterns,

namely dense job arrival, and sparse job arrival. In a dense

pattern, job Ji+1 is submitted with no or a little fraction

of time after Ji’s submission. The sparse job pattern is as

depicted in Figure 1(b), with 10 jobs divided into three

groups, each of which contains 3∼4 dense jobs10.

The result of using a sparse job pattern is illustrated in

Figure 4(a), in which the processing time is normalized.

We set the values of TET and ART in S3 (denoted as

S3) as 1. The actual values are 1,388 (sec) and 467 (sec)

respectively. Hadoop’s default FIFO scheduler (shown as

FIFO) cannot utilize data scan, resulting in poor performance

in both TET and ART. Since the job pattern is sparse,

for MRShare, we studied three variants - (a) SingleBatch

(MRS1) where MRShare processes all the 10 jobs in a

single batch; (b) TwoBatches (MRS2) where the 10 jobs

are split into two batches - the first 6 jobs are grouped as

one batch, and the last 4 jobs as another; (c) ThreeBatches

(MRS3) where the 10 jobs are organized into three batches,

namely jobs 1∼3, jobs 4∼6, and jobs 7∼10. As shown in

Figure 4(a), MRS1 results in very high ART. This is because

jobs that arrive early incur very long waiting time for all

the 10 jobs to be batched. Among the MRShare variants,

MRS2 offers the shortest TET, and MRS3 gives the best

performance in ART. Finally, we note that our proposed S3

has the best performance since it can reduce the waiting

time and exploit shared scan. On TET, FIFO slows down

to 2.2 times of TET in S3 , and MRShare takes 1.03∼1.32

times than in S3 . On ART, FIFO is 2.5x slower, MRShare

is 1.26∼2.54x slower.

Figure 4(b) depicts the results of dense job arrival pattern.

For FIFO, both TET and ART do not change much: a

newly submitted job always has to wait for existing jobs’

completion. On the other hand, the performance of MRShare

and S3 improves significantly. For a dense pattern, S3

achieves a good performance in both TET and ART. Among

the MRShare-based schemes, MRS3 will extend TET and

ART significantly, up to more than three times slower than

S3 . This is caused by the long waiting time in a new batch

before the previous batch completes. MRS1 has the best

performance in both TET and ART, and it is even better

than S3 . The reason is that in a dense workload, MRShare

scheme only needs to wait for a short time before all the

jobs are submitted. But for S3 , the total processing time

is longer because more sub-jobs are initiated to combine

sharable jobs (in this pattern we have 13 sub-jobs) and the

communication cost becomes a dominant factor. The benefit

introduced by MRShare can be revealed only when jobs are

submitted together or in a dense pattern.

E. Experiments on Different Workloads

Now we examine the performance of S3 with a more

intensive workload. We use the aforementioned heavy word-

10We denote this pattern as “sparse”, because job submissions are more
separated than in dense patterns. To be precise, this is not the most sparse
job pattern which has nearly no sharing opportunities among jobs, resulting
in no performance gain in S3 .

332

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 50

 100

 150

 200

 250

 300

 350

10987654321

Ti
m

e
(s

ec
)

of Combined Jobs

(a) total execution time

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 1

 2

 3

 4

 5

10987654321

Ti
m

e
(s

ec
)

of Combined Jobs

(b) average map time

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 50

 100

 150

 200

 250

 300

10987654321

Ti
m

e
(s

ec
)

of Combined Jobs

(c) average reduce time

Figure 3. Cost of combined jobs

count workload. The job submission pattern in this group

of experiment is similar to the sparse pattern in normal

workload, and the block size is still 64MB. The result is

illustrated in Figure 4(c). The total execution time for S3

increases 40% more compared to the normal workload. The

data processing time dominates the entire execution time,

making the impact of shared scan less significant. As a

result, the TET difference between S3 and MRShare is not

obvious. For MRShare with two combinations (MRS2), it

saves 15% of TET as compared to S3 . But MRS3 extends

40% more processing time. All MRShare schemes do not

perform well in ART.

F. Experiments on Different Block Sizes

In this group of experiment, we vary the default block

size in MapReduce framework. Every map task processes

one block, therefore with the total input size fixed, the larger

the block size is, the fewer the number of map tasks will

be launched. We use this group of experiment to illustrate

the impact of communication cost on S3 scheduler. In the

previous experiments, we use the default block size 64MB.

Now we make comparisons by configuring block size as

128MB and 32MB. The results on 128MB, 64MB, 32MB

block are shown in Figure 4(d), Figure 4(a) and Figure

4(e) respectively. Note that in the figures, the results are

normalized with respect to S3 (i.e., it has a value of 1).

As observed, a block size of 128MB gives the fastest actual

processing time.

The result of 128MB block size is shown in Figure 4(d).

With a larger block size, the total number of sub-jobs reduces

(i.e., the number of segments reduces). Meanwhile, the time

to process one block does not increase significantly. There-

fore, the total time to perform a MapReduce job is shortened.

However, because we fix the job submission pattern, with

shortened processing time, the sharing opportunity reduces,

degrading the performance of S3 . But in this case, when

new jobs are submitted, it is more likely that previous jobs

have already completed – the waiting time reduced. From

the experiment result, we observe that S3 has slightly better

performance in TET than FIFO approach, but still wins in

respect to ART. The MRShare approaches still cause a long

delay waiting for new jobs’ arrival; therefore they cannot

beat S3 in either TET or ART.

For 32MB block size, each job requires more time to

complete. With the same job submission pattern, the work-

load becomes denser, resulting in more sharing opportunities

among jobs. However, due to the increase of the communi-

cation and processing cost introduced by more MapReduce

tasks in each job, the total execution time increases sig-

nificantly comparing to that with 128MB and 64MB block

size. As a result, all the different scheduling schemes have

the worst performance comparing to that with larger block

sizes. But the performance gain in S3 still holds. Compare

to S3 , different MRShare jobs are 1.35∼1.72x slower in

TET, and 2∼3.86x slower in ART. With more segments of

file to process in the cluster, a new job is more likely to

be blocked if no job-sharing feature is enabled, which can

significantly degrade the overall performance of the cluster.

G. Experiments on Selection Workload

In the previous experiments, we have used the unstruc-

tured wordcount dataset. However, S3 is not limited to

process unstructured data only. In this group of experiments,

we transform a SQL query into a MapReduce program,

processing a large-scale structured database table stored in

HDFS.

The dataset we use is the lineitem table used by TPC-H

benchmark. The table has 16 columns, with different types

of attributes. We generated 10GB of lineitem table on each

node, therefore the total input size is 400GB.

We translate the following SQL query into MapReduce

programs as the workloads for this experiment:

select ORDERKEY, PARTKEY, SUPPKEY,
max(EXTENDEDPRICE)

from LINEITEM
where EXTENDEDPRICE > $VAL
order by EXTENDEDPRICE desc limit 5

We choose the value of VAL carefully such that only

10% of the entire tuples are selected. We use a similar

sparse job submission pattern as in wordcount workloads,

and we set the block size as 64MB. The result is shown in

Figure 4(f), which confirms S3 ’s ability to process structured

data. Because of the data size, the jobs in the workload

takes a long time to execute. For FIFO, once a job is

blocked by the existing jobs, usually it will take much longer

time to wait before execution starts; thus, compared to S3 ,

333

 0

 1

 2

 3

ARTTET

N
or

m
al

iz
ed

 T
im

e

FIFO
MRS1
MRS2
MRS3
S3

(a) Sparse job pattern; Normal
workload; Block size: 64MB

 0

 1

 2

 3

 4

 5

 6

ARTTET

N
or

m
al

iz
ed

 T
im

e

FIFO
MRS1
MRS2
MRS3
S3

(b) Dense job pattern; Normal
workload; Block size: 64MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ARTTET

N
or

m
al

iz
ed

 T
im

e

FIFO
MRS1
MRS2
MRS3
S3

(c) Sparse job pattern; Heavy work-
load; Block size: 64MB

 0

 1

 2

 3

 4

 5

 6

 7

ARTTET

N
or

m
al

iz
ed

 T
im

e
FIFO
MRS1
MRS2
MRS3
S3

(d) Sparse job pattern; Normal
workload; Block size: 128MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ARTTET

N
or

m
al

iz
ed

 T
im

e

FIFO
MRS1
MRS2
MRS3
S3

(e) Sparse job pattern; Normal
workload; Block size: 32MB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

ARTTET

N
or

m
al

iz
ed

 T
im

e

FIFO
MRS1
MRS2
MRS3
S3

(f) Structured Data Processing (selec-
tion task)

Figure 4. Experimental Results

FIFO has much worse performance. By comparing the result

of MRShare with S3 , we can find that S3 outperforms

MRShare in both TET and ART.

S3 breaks a job into a set of sub-jobs, which are executed

sequentially. This means that when a new round of sub-jobs

are submitted, the previous sub-jobs have already generated

some partial results. For certain applications, in particular

aggregation queries, it is possible for subsequent phases of

sub-jobs to exploit and utilize the results generated from

earlier phases to further improve performance. Given that

the size of the previous results is not large, the existing

jobs can simply read in these output, during this process a

refined partial aggregation can be performed. As a result, the

final aggregation of all output can be started earlier without

introducing a significant overhead. We have studied various

output collection schemes in S3 , but due to space limitation,

we have to discuss the details in [16].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new scheduler, S3 , that

can exploit sharing of data scan to improve performance

of MapReduce. Unlike existing batch-based scheduler, S3

allows a job to salvage unprocessed data of running jobs,

which significantly shortens the time between a job’s arrival

and the start of processing. We have implemented S3 , and

conducted an extensive performance study on a Hadoop

cluster of over 40 nodes. Our experimental results showed its

effectiveness. There are several directions for future work.

Currently, our S3 scheduler is based on sharing data scan.

More scheduling policies, such as computational resources,

job priorities, etc., can be added to S3 . Moreover, scheduling

with full-resource utilization and partial-resource utilization

can be integrated to make the scheduling mechanism more

dynamic and flexible.

VII. ACKNOWLEDGEMENT

We would like to acknowledge the support of “NExT

Research Center” funded by MDA, Singapore, under the

research grant: WBS:R-252-300-001-490.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI ’04, pp. 137–150.

[2] http://hadoop.apache.org

[3] http://www.greenplum.com/technology/mapreduce/

[4] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: A MapReduce Framework on Graphics Processors,”
in PACT ’08, pp. 260–269.

[5] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for Multi-core and
Multiprocessor Systems,” in HPCA ’07, pp. 13–24.

[6] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters,” in SIGMOD ’07, pp. 1029–1040.

[7] F. N. Afrati and J. D. Ullman, “Optimizing Joins in a Map-
Reduce Environment,” in EDBT ’10, pp. 99–110.

[8] http://hadoopblog.blogspot.com/2010/05/facebook-has-
worlds-largest-hadoop.html

[9] P. Agrawal, D. Kifer, and C. Olston, “Scheduling Shared
Scans of Large Data Files,” Proc. VLDB Endow., vol. 1, pp.
958–969, August 2008.

[10] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, “Quincy: Fair Scheduling for Distributed
Computing Clusters,” in SOSP ’09, pp. 261–276.

[11] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas, “MRShare: Sharing across Multiple Queries in
MapReduce,” PVLDB, vol. 3, no. 1, pp. 494–505, 2010.

[12] http://hadoop.apache.org/common/docs/r0.21.0/hod scheduler.html

[13] http://www.clusterresources.com/products/torque-resource-
manager.php

[14] http://hadoop.apache.org/hdfs/

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43,
2003.

[16] http://www.comp.nus.edu.sg/∼shilei/document/s3.pdf

334

