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ABSTRACT sional table. To explain this, we use the Amazon product database

Many of today’s publish/subscribe (pub/sub) systems have beenasaworking scenario.

designed to cope with a largelumeof subscriptions and high
event arrival rateyelocity). However, in many novel applications
(such as e-commerce), there is an increasangety of items, each
with different attributes. This leads to a very high-dimensional and
sparse database that existing pub/sub systems can no longer su

EXAMPLE 1. We can model the Amazon product database as
an information provider and customers as information consumers.
Since Amazon has launched a Wish List to collect customer inten-
tion in product purchasing, we can extend this function for a cus-

. - L Romer to specify the conditions under which (s)he will purchase the
port effectively. In this paper, we propose an efficient in-memory item. Thepevefr¥t would be either the Iaunch(oz‘ a newpproduct ora

index that is scalable to the volume and update of subscriptions, discounted product on sale. An example of a subscrintion would
the arrival rate of events and the variety of subscribable attributes.,| ™ P ’ ‘mp _P
be in the form of a boolean expression. e.g., (model=iphomne5s

The_lndex_ |s_alsc_) extensible to support _complex scenarios such ascolor=silver A price<580). A product is represented by a list of
prefix/suffix filtering and regular expression matching. We conduct tiribute-value pairs. e.g., (model=iphoneSgolor=silver A stor-
extensive experiments on synthetic datasets and two real datasetd pars. €.g., =P -

age capacity=16GBn price=550 A contract=no). The customer
AOL query log and Ebay products). The results demonstrate the % e X . :
guperi%rityyof ogur index O\B//eFr)state-of)-the-art methods: ourindex in- VIl D€ notified whenever there is a product in the database safisfy-

curs orders of magnitude less index construction time, consumes a'ng all the specified constraints. However, there are more 2@

small amount of memory and performs event matching efficient! million! items hosted in the Amazon product database. Moreover,
y P 9 Y- there is a wide variety of products and they may have very different

attributes. The product database can be modelled as a very wide
and sparse table. The pub/sub system has to be scalable to the
number of columns as new products are continually being inserted.

1. INTRODUCTION

Publish/subscribe, or pub/sub for brevity, has been well-studied O
in the last two decades [3, 6, 9, 16, 20, 22, 26], with deployment
in a variety of applications including online advertising [16], stock In the following, we summarize several applications with high

market [6] and social media monitoring [9]. A pub/sub system con- dimensions of attributes for which a pub/sub system may add value:
tains two types of roles, information provider and information con-

sumer. The information provider publishes information in the form e Electronic Commerce Online electronic commerce com-
of events The information consumer subscribes interesting events panies like Amazon, Ebay and TaoBauave large number
in the form ofboolean expressioThese two roles can be intercon- of products in many different categories. Information extrac-
nected either via a simple client/server model [12,20,22,26] or over tion techniques [13] can be adopted to extract attribute-value
a network of brokers routing events in a distributed paradigm [3, 7, pairs from the unstructured web page to support faceted search
14]. The system has to ensure a timely delivery of matching events [8] and pub/sub. For example, Taobao, the largest online
to the subscribers. shopping website in China with more than 800 million prod-
Existing pub/sub systems, however, are designed with two fac- ucts’, has integrated faceted search in the system to facilitate
tors in mind: a large volume of subscriptions and a high event ar- customers filtering from a great number of search results.
rival rate. However, pub/sub systems are increasingly being adopted Similarly, these systems can allow customers to subscribe
in e-commerce applications with a wide variety of items, each with to products they are interested in and receive a timely no-
different attributes. The database can be modelled as a sparse and tification when a match occurs. Such a pub/sub model may
high dimensional table, and an event is a tuple in this high dimen- emerge as a new business intelligence model to improve on-

line shopping experience.

_ o _ o e Groupon and Deal Websites Groupon and other deal web-
This work is licensed under the Creative Commons Attribution- sites have the pub/sub gene in nature. Instead of going through

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li- every deal sent to the registered email address, it would be
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per- . . '
mission prior to any use beyond those covered by the license. Contact more convenient for users to only subscribe the deals they

copyright holder by emailing info@vldb.org. Articles from this volume  1This number is acquired by submitting an arbitrary keyword query
were invited to present their results at the 40th International Conference on |ixe “_3sdsddafd” to the Amazon product search engine

Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China. 2http: // W t a0bao. com '
Proceedings of the VLDB Endowmewitl. 7, No. 8 3http: /] ' | ' nl'si tei nf ol t aob
Copyright 2014 VLDB Endowment 2150-8097/14/04. p://www. al €xa. com st t el nt o/ taobao. com
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are interested in using boolean expressions. Similar to the this manner, the predicates with the same operator are clustered so
product database, the deals also show great variety in termsthat we can design specific index to support various operators and
of the subscribable attributes. to enhance the subscription expressiveness. The effectiveness is
demonstrated in Figure 1: Oplndex achieves better event matching
performance with much smaller construction cost.

In summary, the contributions of this paper include

e Google Basé. Google Base, which later becomes Google
Merchant Center, allows users to upload any structured or
unstructured product feeds in various file format. A real-time

pub/sub system on top of Google Base would be of utmost 1. We show that pub/sub applications in e-commerce are be-

importance to business dealers, e.g., to monitor the potential
competitors within an area.

e Web Tables and Semantic RDF Databasdn recent years,

harvesting knowledge from the web [11, 24, 25, 28] has at-
tracted more and more attention. For example, Google’s
Freebase [1] has collected and published more than 39 mil-
lion real world entities, with more than 14100 attributes.
These structured or semi-structured harvested results are in-
valuable. Agents can subscribe to such information for deci-
sion making, just analogous to brokers subscribing to stock
price.

coming increasingly important. Furthermore, we identify a
gap in existing pub/sub systems - they cannot cope effec-
tively for applications with very high dimensional table.

. We propose a novel index structure, Oplindex, which is scal-

able with respect to the volume, velocity and variety of the
data. In particular, Oplndex is more efficient, has low mem-
ory requirement and maintenance cost, and can be easily
extended to support more expressive subscriptions (i.e., can
support prefix/suffix and regular expression matches).

. We provide a comprehensive complexity analysis of our Opln-

dex in terms of the memory overhead, and data insertion and

To understand how existing systems cope with boolean expres- query processing cost.

sion matching when events come from a sparse and high dimen-
sional table, we conducted an experimental study using two re-
cently proposed pub/sub index&sk-index [26] and BE-Tree [20,
22]. k-index partitions subscriptions into inverted lists while BE-
Tree uses hierarchical clustering to organize the data. Although
in[20,22],k-index was reported to be inferior to BE-Tree in datasets  The remaining of the paper is organized as follows. We present
with hundreds of attributes, we have new findings when we fur- our boolean expression model and problem definition in Section 2.
ther increase the dimension space. Figure 1 shows the index conin Section 3, we review existing pub/sub works. In Section 4, we
struction time and event matching time for a uniformly distributed propose Opindex and analyze the memory consumption and inser-
dataset when the number of attributes grows from 20K to 60K. The tion cost. Event matching algorithm as well as query processing
results shed interesting insights that were not previously reported: complexity analysis are presented in Section 5. We discuss ex-
The inverted index solution not only significantly outperforms the tensions of our index to support complex operators in Section 6.

BE-Tree in terms of index construction time, but also demonstrates Extensive experiment results are reported in Section 7. Section 8
better scalability in terms of event matching timdowever, due concludes the paper.

to its ineffective partitioning mechanisrik;index consumes more

memory than BE-Tree and supports only a subset of the operatorss  BOOLEAN EXPRESSION MODEL

that BE-Tree can handle. .
In pub/sub systems, a subscription is represented as a boolean
expression which provides flexibility for users to specify their in-

4. We conduct extensive experiments on synthetic and real datasets
(AOL query log and Ebay Products). The results show that
Oplndex is superior in terms of index construction time, mem-
ory cost and query processing time.

OplIndex Oplndex

100000 { B Tres g BETee 01 terests. In this section, we present the boolean expression model as

o000 g 1o - well as the matching semantics.
£ [
i = o - .
s 1000 § wl— o o H5—1F 2.1 Predicate
1] . o . . .

100 B The most basic unit in a boolean expression model is a predicate.

10 L BB 10 A predicate is determined by three elements: an attriBytan

20K 30K 40K 50K 60K 20K 30K 40K 50K 60K

operatorfop and an operand 0. A predicate accepts an input value
x and outputs a boolean value indicating whether or not the operator
constraint is satisfied:

p(A fop, 0 (x) — {0,1}

In this paper, we adopt a data model that is more general and ex-

Our findings prompted us to design a more efficient, expressive pressive than that used in the state-of-the-art index methods [20, 22,

and compact index, which we name Opindex, to support pub/sub 26]. Besides supporting numerical, categorical, and string attribute
for e-commerce data that exhibits a large number of dimensions. gomains with the standard relational operaters<(, =, #,>,>),
Oplndex adopts a two-level index structure and organize the sub- set operatorsds, ¢s), and interval operators=(, ¢;) &, our model

Scriptions using inverted lists. In the first |eVe|, we select a inOt can also support Comp|ex Operators such as the prefixl SUfﬁX, and

attribute for each subscription, and subscriptions with the same regular expression matching operators for the string domain; we

pivot attribute are grouped together. In the second level, subscrip- discuss how complex operators are supported by our approach in
tions are further partitioned based on their predicate operators. InSection 6.2.

Total Number of Attributes Total Number of Attributes

(a) Index Construction Time (b) Event Matching Time

Figure 1: Performance w.r.t. increasing number of attributes

“htt p: // base. googl e. com 6\We make a distinction between the operates(representing
5The implementation of the two indexes was kindly provided by SQL's IN operator) ane:; (representing SQL's BETWEEN opera-
the authors of BE-Tree. tor).
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2.2 Boolean Expression 3. RELATED WORK

A boolean expression is a combination of predicates in either Pub/sub systems have been extensively studied for over a decade;
Conjunctive Normal Form (CNF) or Disjunctive Normal Form (DNF). and there has been a lot of focus on indexing support to efficiently
To simplify the presentation, we assume that a boolean expressionidentify matching subscriptions (e.qg., [12,26,29]). The basic idea is
is represented in DNF with a single clause (i.e., simply a conjunc- to partition the subscription database into subsets of predicates us-
tion of predicates). We will discuss how to handle more general ing some hashing scheme and organize each predicate subset using
forms of boolean expressions in Section 6. Thereafter, a subscrip-the inverted list data structure. For each predigate an incom-

tion Sis defined oven predicates as follows: ing event, appropriate inverted list indexes are searched to identify
AL B AL S LS subscription predicates that matphand a counting algorithm is
SIP P AR P AL AP P (X) used to determine matching subscriptions for an event.
Thek-index [26] is the state-of-the-art approach based on inverted-
We refer to the size of a subscripti@denoted byS, asthe num-  |ist index. The subscription predicates are partitioned into subsets
ber of predicates i using a three-level partitioning scheme: the subcriptions are first
Table 1 shows a small collection of six subscriptions that we will partitioned based on their size, and the predicates in a subscrip-
be using as our running example in the rest of this paper. tion are further partitioned based on the predicate’s attribute and
value. For example, for a predicadel in a subscription of size
Table 1: Example Subscriptions 3, the predicate will be partitioned into the subset associated with
S | A=2ABEs{3,6,9} the partition key(3,A,1). By using the subscription size as the pri-
S | A<S8AC>2 mary partitioning key, thé-index is able to prune away inverted-
S [C=6AB<4AE€ 312 list searches for subscriptions with size larger than that of the event.
S | A=2 A drawback ofk-index is that a range predicate in a subscrip-
2 geil{%%}lz/\sgs I DSIONE=7 tion needs to be rewritten into a disjunction of equality predicates,

which increases the size of tkandex with many inverted-list en-
tries for a single subscription predicate. As an example, Figure 2
illustrates thek-index entries for our running example subscription
database in Table 1. Note that for the predidats 8 in subscrip-
2.3 Event tion S, assuming the domain & is {1,2,...}, the predicate is
An information publisher publishes an event in the form of a col- rewritten asyfA=1) Vv ... v (A= 8) which requires eight en-
lection of attribute-value pairs. We model an event as a conjunction tries(2,A,i), i € [1,8], to be created in thi-index.
of equality predicates.

[nJ(Av) JlLst J[n](Av) JLst][n](Av) [ List|

E:(Ay=a)AA,=3)A...A(A, = Gn) 11A2 | S D, ) [ S AL [ S

_ AD (2 ||, ED |S B3 | S

We refer to the size of an event, denotechbgr |E|, as the number (A2 | S.S E..) | S (B,6) | S
predicates in the evef. For example, an event about iPhone may A | = (E9 |S | 41€CY |S
look like the following: > EQ gg g Eg 1) ) 2 284.)) 2
i — whi i i (B6) | S B4 | S (D,10) | S
(model=iphoné A color =white A price= 800 A size= 16GB) ((B:’ g) S . (% g) S 22741_)4) 2
2.4 Boolean Expression Match Ecj.,),) % Eej..).) 2 E) | s
Given a subscriptio®and an evenE, Smatche< if it satisfies 0,12 | S (E12) | S E7D | S

two requirements, namely, attribute match and value match. ) - . o
q ¥ Figure 2: k-Index for subscriptions in Table 1 (n = subscaopti

DEFINITION 1. Attribute Match size, A = predicate attribute, v = predicate value)

There is an attribute match between a subscription S and an event

E if for any attribute occurring in S, it also appears in E. More recently, a new index method, the BE-Tree, was shown to

outperform thek-index [20, 22]. Unlike thek-index, the BE-Tree

We useS ~ E to denote an attribute match. For exampie,< uses a two-phase space-cutting technique and organizes the sub-
3 A B=2) is not an attribute match ta= 2. scriptions in a hierarchical index. The subscriptions are repeatedly
partitioned by attribute followed by a value space patrtitioning. Fig-
DEEINITION 2. Value Match ure 3 shows an example of BE-Tree indexing the subscriptions in
There is a value match between a Subscription S and an event E |fTab|e 1. Thq)'directorystores the attributes selected for partition-
for any attribute A occurring in S and E, we havé fr:9(g) = 1, ing. In this example, the-directorycontains two attributes and
where Pfor0c S and (A=) € E. B, associated with two differem-nodes If an event does not con-

tain attributeA, all the subscriptions in the subtreemphode Acan
We useS~y E to denote a value match. Now we can define the be pruned. Then, the subscriptions are partitioned by the associ-

boolean expression match. ated attribute value. The value space is organized in a hierarchy
of intervals with different length. Each subscription is attached to
DEFINITION 3. Boolean Expression Match the smallest interval that can cover the predicate. For exarSple,
A subscription S is said to match an event E, denoted ©yES if contains a predicat®<4 and is inserted intp-node=Bwith value
S~aE and Swy E. interval[1,4]. Given an evenB =5, all the subscriptions attached
to intervals that are not stabbed By=5 can be prunedS; is in-
Given a subscription collectiof and a published ever, our serted into another branch because it does not contain attébute
goal is to find all the subscriptiorse S such thatS~ E. or B. In the leaf nodes, inverted lists of bitmaps are maintained
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for efficient evaluation of a predicate. The key of the lisths t counting-based approach is used to identify the matching subscrip-
attribute-value pair, the same as thakimdex. As the number of tions.

attributes increases, BE-Tree generates rpemedeswhich incurs For convenience, Table 2 summarizes the key notations used in
higher construction, optimization and access cost. Moreover, both this paper.

thek-index and BE-Tree support only the standard basic predicate

operators but not more advanced matching operators such as pre- _ Table 2: Notation Table
fix/suffix and regular expression matching operators. In contrast, | P% ™ [ A predicate defined over attribufewith operatorf,, and
our approach can support such complex matching operators (to be operand 0

A subscription

An event

The pivot attribute of subscriptio®

The total number of distinct attributes (or dimensions)
The number of subscriptions in the subscription database
The number of predicates in a subscription
The number of attributes in an event

The cardinality of an attribute domain

The number of bits in a segment signature

elaborated in Section 6.2).

p-directory

sla|3||z|e|g{m v

c-directory

4.1 Level 1: Subscription Partitioning
In the first level of partitioning, the subscriptions in the database

& {c:\ G S are partitioned into disjoint subscription lists based on the pivot
et attribute of each subscription as follows:
S = L<A1> U L(A2> Uu...u L(Ad>
Figure 3: BE-Tree for subscriptions in Table 1 Lia)y = {SSeSAds=A}

Index methods to support ranked pub/sub matching, where only ;S;?’agﬁg:;gx denote the subscription list associated with the

the top—k ma.tching subscriptions are retgrned, have also been pro- From the definition of attribute match, we know that if a sub-
posed including score-optimal R-tree [16findex [26], and a mod- scriptionS matches an evert, then all the attributes i have to

!fied variant of BE-Tree [21]. Our index focus.es on efficient filter- appear irE. Clearly, if Scontains an attributé; that does not oc-
ing and we plan to support tdppub/sub matching in future. Other cur inE, thenSwill definitely not matchE. Thus, giverE, we only

directions in pUb/SUP _subscription matching include support for need to consider the subscriptions whose pivot attribute occurs in
XPath-based subscriptions (e.g., [10, 19, 27]), stateful event match-E as stated in the following result

ing (e.g., [5, 6,9, 15, 16]) where subscriptions may span multiple

events and efficient routing solutions in a content network [5,6,14, LEMMA 1. Given an event E, the candidate matching subscrip-

18, 23]. Since we are interested in the problem of efficient event tions for E are contained in the subscription ligts a)|Ai € E}.

matching without considering network communication, the pub/- . ) ) .

sub in a content network is beyond the scope of this paper. For To minimize the n.umber of candidate matching subscriptions to

more information, readers can refer to the survey in [2]. be accessed for an input stream of evétthe problem of select-
ing the pivot attribute for a subscripti®is modeled as a visibility
minimization problem [17]. LeA(A) denote the frequency of an

4. INDEX STRUCTURE attributeA in an event strearfi. We choose attributd to be the
In this section, we present our new index method, na®gbh- pivot attribute for a subscriptio8if A appears the least frequently

dex to efficiently retrieve matching subscriptions for a given in- in E among all the attributes i§ i.e.,

put event. Oplndex uses a novel, two-level partitioning scheme 85 = arga sminA(A) 1)

to organize the subscription predicates into disjoint subsets each

of which is independently and efficiently indexed to minimize the We can computé(.) based on an event log or using the subscrip-
number of candidate subscriptions accessed for event matching. Intion databasé to approximate the attribute frequency distribution

this way, our index design provides a highly efficient and exten- in E.

sible approach for subscription matching which can support com-  The following result establishes a desirable property of our pivot
plex predicate matching operators beyond the standard operatorgttribute selection criteria.

supported in current state-of-the-art methods [20, 22, 26].

In Oplndex, each subscriptio8 in the database is associated
with a judiciously selected attribute termed fiisot attribute de-
noted byds, which is one of the attributes contained $n The
subscriptions are partitioned using a two-level partitioning scheme
as follows: first, the subscriptions in the database are partitioned PROOF ByLemma 1, we know that the candidate matching sub-
based on their pivot attributes into subscription lists, and the pred- scriptions are contained ifiL ) [Ai € E}. Let f(A)) represents the
icates in each subscription list are then further partitioned based frequency of attribute Ain E. Given a subscription S, if the pivot
on the predicate operator into predicate lists. Each predicate list isattribute for S is A then the subscription S will be accessed
then independently indexed using an efficient method that is appro-times in order to match all the eventsh Since we want (&)
priate for the predicate operator. Given an input event, appropriateto be as small as possible, we define the pivot attribute to be the
predicate lists are accessed via their corresponding indexes; and attribute with the minimum visibility to evenrs

LEMMA 2. Given a stream of published everffits usingds =
arghesMinA(A) to select pivot attributes for partitioning subscrip-
tions minimizes the number of candidate matching subscriptions
accessed to match the event&in
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EXAMPLE 2. Figure 4 depicts the first-level partitioning of the  The predicates having the same attribute will belong to the same
subscriptionsS in Table 1 into three lists of subscriptions. In this segment iri_(és‘fop% In this way, given an everf : (A=10, we
exampleA(.) is derived based on the attribute frequencs which only need to access the segment containing attriBut&he sec-
results in the three pivot attributes A, C, and D being selected. ond optimization introduces @-bit signature for each segment:
Thus, given an event HA = 2) A (B = 6), the subscriptions ind for each predicat®”:or: 9in a segment, we apply a hash function
and Lp are guaranteed not to match E; therefore, the subscriptions hon (A;, fop, 9 to select a bit position iw; the selected bit in that
in these two lists need not be accessed for matching event E. segment’s signature is then set to 1. The hash fundticmde-

fined as follows: iffop is ‘=’, then h is a function of bothA; and o;
otherwise h is a function of onlyA;. The intuition is that a pred-
icate matching on equality operator requires both the attribute and
operand to be identical. However, operators and ‘>’ are less
restrictive and we cannot take advantage of the operand for pruning

@) in the hash function.
Q ) ExAMPLE 3. Consider the matching of an event:EA =9

against a predicate list |5, _,. We apply the first optimization by
. i o o ] using attribute A to search the directory onsL_, to determine
Figure 4: The first level partitioning of subscriptions in Table 1 the segment in f5, _, that possibly contain predicates for attribute
A. Next, we apply the second optimization by computing the hash
i L value HA,=, 0 to determine a bit position and check if the selected
4.2 Level 2: Predicate Partitioning bit is turned on in the selected segment’s signature. If the bit is
In the second level of partitioning, the predicates in each sub- off, then we conclude that there are no matching predicates for the
scription listL s, are further partitioned based on the predicate eventin L, _; otherwise, we perform a range scan on the selected

Sub | Pivot Attribute @ -_-
P S S

S
Ss
Sy
S5
Se

OO = Q=

operator into predicate lists; i.e., segment in kss—) tO search for matching predicates. O
L = Lisstop) Y Lostop) YU Lissfop) 4.3 Index Construction
L<557f0q> = {Plfop ePAPES A Se L<55>} Our Oplindex for a subscription database consists of two compo-
nents. The firstcomponent is a collection of predicate {istg, ),

Eaph predicate I|§I<5S7f0q>. is then |ndepeqdently|ndexed using an Lia<) Liasy: - Liagoy Liag): Liags)) derived from the
efficient method appropriate for the predicate operator. _ two-level partitioning scheme that we have described. The pred-
Our approach supports both the standard predicate operators (i.e.icate lists are used to search for matching subscription predicates
<<= %>, 2, €s,¢s €ib €i) as well as more complex match-  qyring event processing. The second component is a collection
ing operators (to be discussed Section 6.2). In the following dis- of counter arraygVa,, ..., Va,}, corresponding to the collection
cussion, we shall explicitly consider only the three most common of sybscription lists{L(ay). ---. Liay}. The counter arrays are
relational operators={, <, >) to simplify the presentation. Other  ysed by a counting-based algorithm to detect matching subscrip-
relational operators#, <, >) are treated similarly and are omit-  tjons for an event. For each subscriptipin L, the counter
ted here. Predicates with set or interval comparison operators arevalueVAi[j} represents the number of predicatesiithat have not

rewritten using the common relational operators. For exargpte, been matched during the processing of an event. These counter
{3,6,9} is rewritten agB =3 vB= 6 v B=9),andE € [3,12 values are initialized to the number of predicates in the respective
is rewritten agE > 3 A E <12)". subscriptions before the start of an event matching, and the counter

In the rest of this section, we discuss how a predicate iy, . value for a subscriptio$; is decremented by one for each pred-
where fop € {=,<,>}, is organized as an inverted-list structure jcate inSj that matches the event being processed. Thus, a sub-
to efficiently process an evefi: (A=0. Given a global order-  scriptionS; in L, matches an event iff[j] is reduced to zero.
ing of attributes, we use the pdi#y, g as the sorting key and the T facilitate the efficient updating of these counter values, for each
predicates®”-‘er-%in each predicate list s, 1, are sorted innon-  predicatepin a predicate list, we also store a pointer to the counter
descending order qfd, 9. In other words, the predicates are first  array entry corresponding to the subscription that contgins
sorted by the attribute and ties are broken by the comparison of  Algorithm 1 shows the algorithm to insert a new subscript®on

operand. In this way, the matching of an event(A =0 against into an Oplndex. IfS contains any set/interval predicate operator,
a predicate list 5 1., wherefop € {=, <, >}, is performed effi- we first rewriteSin terms of the standard relational operators as de-
ciently using arange scan b 1, ). Specifically, iffopis ‘=’, we scribed in Section 4.2. Next, we determine the subscription’s pivot
perform an equality search witfd, 0; if fop is ‘<’, we perform attributeds and append a new entgyin the counter arrays_ for

a range scan with(A, 9, (A, +o)]; and if fop is *>’, we perform S For each predicatB-for ©c S we insert the predicate along

a range scan witfi(A, —), (A, 9]. Here, —» and +, denote, with a pointer toe into the predicate list 5 r, ). The directory on
respectively, the minimum and maximum values of attriAite L(3s.1,,) @nd the appropriate segment signature are updated as fol-

In our implementation of the inverted list structures, we use tWo |5vs If PA-for Ohecomes the first predicate in its inserted segment
optimizations to speed up range scans on predicate lists. The first, L5 1, We update the directory o, s, , to reflect this. In
optimization splits the attribute space itcsegments and uses a additizr;mwe compute the hash valbg;, F‘O;Pa to select a bit in

directory withb entries to |n(_1lex each predicate Iiggsj fop)- E_ach _the segment's signature and set this bit to 1.
entry corresponds to a contiguous segment of predicates in the list.

“In contrast to th&-index approach, our approach does not rewrite EXAMP".E 4. Figure 5 shows th.e Qplndex f(.)r the SL.Jl'.)SCI’IptI.OFI
an interval-operator predicate into a disjunction of equality predi- database in Table 1.  The subscriptions are first partitioned into

cates and therefore avoids the problem of generating many indexthree subscription lists k), L), and Lp); and each subscription
entries for an interval-operator predicate. list is further partitioned into three predicate lists corresponding to
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Algorithm 1: Insert (SubscriptionS)

1. Determine the pivot attributés

2. Append a new entrgin Vs

3. for each predicat®”:or9c Sdo

4 Insert(PNfow 9 ptr) into L (3s, fop) whereptr is a pointer to
e

Update the directory fol 5 ¢,y & the appropriate

segment’s signature f&*: for: ©

o

e [0010] 0111 ] [wa]eawa[ea] 6]

5s=A [©
®

® ] ._
_—
©

o [0000] o110]

)
=2 (3] 60 f -
@r{ 1110 [ 0000 | [cafen]es]”

7y

‘ (D,10) "(D,n; ‘

[0000] 1010 ]

I I I
I I I
Pivot Attribute | Segment Directory | Segments | Counter Array
I I I
| | |

Figure 5: Index Structure

the predicate operators=", ‘ <’, and ‘>'. Each list is split into
two segments stored contiguously: one with attrioutdsC,E}

and the other witf B,D}. Each segment is associated witd-&it
signature and the predicates in it are sorted (#, 9. There are
three counter arrays ¥, \c, and \6, corresponding to the three
pivot attribute partitions, and each entry in the segment stores a
pointer to its subscription’s counter array entry. a

4.4 Space and Construction Complexity

We now analyze the space and construction complexity of OplIn-
dex. To facilitate the analysis, we make the following assumptions:

e The number of predicatdsin a subscription follows a uni-
form distribution in[1,may, wherel max is the maximum
subscription size. Thus, the average subscription sizg/is=

Imax

e Each attribute’; occurs at most once in a subscription and
the probability ofA; occurring in a predicate follows a uni-
form distribution.

e Allthe attributes are associated with domirno]. The prob-
ability of an operand @[1,0] occurring in a predicate fol-
lows a uniform distribution.

e There are three possible predicate operatets X' and ‘>’,
each of which is equally likely to appear in a predicate.

e The size of a segment signaturensits and each predicate
list is organized intd segments, whereis a small number.

LEMMA 3. The number of predicates in a segment is %'?‘%9
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PROOF. The average number of predicates in a partitin }-is

'—a‘r -Tavg. Since there are three operators with the same frequency,
after the partition by operator, the number of predicates dﬂ.’lﬁ)m

is %‘lg Since each predicate is equglly likely to be insert.ed into
any of the b segments of,;lzl‘w% the size of each segmentrjs=

NI avg

-5

The following result establishes the linear space complexity of
Oplndex.

LEMMA 4. The space complexity of OplIndex i$ND ayg).

PROOF Oplndex consists of four data structures: predicate lists,
counter arrays, segment directories and segment signatures. Since
there is one counter entry for each subscription, the size of the
counter arrays is ON) given N subscriptions. Since each predi-
cate is inserted into a unique predicate list, the space requirement
of the predicate lists is (N[avg). The space requirement for the
segment pointers and signatures i€@) and can be ignored com-
pared to that of predicate lists. Therefore, the final space complex-
ity of OpIndex is QNI ayg).

The insertion procedure consists of three steps: find the pivot
attribute, append an entry in the counter array and insert each sub-
scription predicate into the apprpriate predicate list. Its overall time
complexity to insert a subscription is given by the following result.

LEMMA 5. The time complexity of inserting a subscription is
O(l avglogn)

PROOF. The cost of the pivot attribute selection ig[Qyg) to
find the attribute with the maximum frequency in the event collec-
tion. The append cost in the second step (¢)&ince the counter
array is not required to be sorted and we can simply append the en-
try to the end of the array. Finally, for each predicate, it takgd D
to find the corresponding segment to insert the predicaféodD)
to insert the predicate in order and(®) to update the segment sig-
nature. Therefore, to insert a subscription witilQ,) predicates,
the time complexity is @ avglogn). |

5. QUERY PROCESSING

Algorithm 2 provides an overview of how Oplndex retrieves match-
ing subscriptions for an input evelit Before the start of the match-
ing, we initialize the set of matching subscriptioR4o be empty,
and each counter array value to its respective subscription size.

To search for matching subscription predicates, we enumerate
the candidate pivot attribute®; from the set of distinct attributes
appearing in the everif (step 3). IfAj is indeed a pivot attribute,
we enumerate each attribute-value p@r, 9 in E to search the
predicate Iist&<Aj.fop>, fop € {=, <, >}, for predicates that match
A =0. To speed up the range-scan searchdq,gnop , the two
optimizations described in Section 4.2 are applied (steps 7 and 8).
For each matching predicalereturned by the scan, we decrement
the appropriate counter array valg [ptr] using the subscription
pointer ptr associated wittP. If the counter value reduces to zero,
we have a matching subscription férwhich is added to the result
setR.

ExAMPLE 5. Consider the processing of the evéBt=6 A
C =3 A E =9) using OpIndex in Figure 5. Among the three at-
tributes in the event, only attribute C is used as a pivot attribute.
Therefore, only the three predicate Iist@!:>, L<C.S>, and L<C.2>
are searched for matching predicates. This example demonstrates



Algorithm 2: Match (EventE) By Lemma 6, the number of predicates matching an event is

1. Initialize R+ {} given by QMK (14 (M-Lfarl))) m

2. Initialize the counter array values ) . .

3. for each distinct attributé appearing irE do LEMMA 8. Given an eV{enr;[ E of size m, the query processing

4. if Ajis a pivot attributehen costis Qn?-logn(1—(1— )" +W).

2. forfc:eraggcﬁ, o_pg)raetoidoe (=,<,>}do PROOF. Based on Algorithm 2, the number of predicate lists

7 Determine the sepgmes}sa{rTL A 1 COITP. tOA that needs to be searched for processing E (8%). In each pred-

. —th <_J" op) . icate list, a segment hasg predicates (by Lemma 3), and the size
8 if theh(Ay, fop, Q)™ bit of seds signature is sehen ot each segment signature is w bits. The probability that a bit in
9 for each matching entrP, ptr) in the scan oBeg 5 segment signature is not set is given(ly- L. Therefore, the
do probability that a segment needs to be searched for an event pred-

10. Decrement/, [ptr] by one icate A =0 is1— (1— ). If the search cannot be pruned by
1L if Va, [ptr] = Othen _ the signature, the time complexity to search for the first matching
12. gdd the subscription corrp. ¥ [ptr]into  predicate in a segment is(@gn) using binary search. For each

matching predicate found, we incur a constant cost to update its
corresponding subscription counter. By Lemma 7, the total cost in-
curred to update the subscription counters of matching predicates
is given byy. Therefore, the overall time complexity to process an
the effectiveness of partitioning subscriptions using féibutes event E is given by @2 -logn(1— (1— %)n) + ).

to minimize the number of accessed subscriptions: although sub- =]
scriptions $ and § partially match the event, they are not ac-

cessed at all because they are stored in subscription lists whose6 DISCUSSIONS

pivot attributes do not appear in the event. In contrast, the k-index

approach would have accessed all the three partially matching sub- I this section, we discuss how Oplndex can be extended to han-
scriptions. O dle general CNF/DNF subscriptions as well as support more com-

plex predicate operators.

13. return R

5.1 Query Processing Complexity _ o
In the following, we analyze the query processing complexity 6.1 Handling General CNF/DNF Subscriptions

based on the same assumptions in Section 4.4. First, we estimate Our discussion so far has considered only simple boolean-expression
the matching probability between a predicgfe for-9and an event subscriptions consisting of a conjunction of predicates. We now
predicated; =7q. discuss how our approach can be extended to handle more general

LEMMA 6. The probability of a predicate 42 fer:0 matching boolean expressions in DNF or CNF:

A =gisk=3(1+32). DNF:  (PiiAP2A ... AP ) V...V (Pmg APm2 A .. APmn,)

PROOF. There are three cases to consider depending on the pred-CNF: (PiaVP12V... VP )A... A (P VP2 V... V Py,
icate operator. If §pis '=’, then there is a match if = 0; if fop
is '<’, then there is a match if ‘@ [,0]; and if fop is '>’, then
there is a match if ‘@ [1, g]. Since the domain of each & [1, 0],
the predicate operand 0 and operatgp, fire each uniformly dis-
tributed, the probability for a predicate to match an event is given

For subscriptions in DNF, we can consider each conjunctive clause
in such a subscription as a simple subscription; 8e-,S, VS Vv
...V & with each§ = P1 A... ARp,. ThereforeSis a matching
subscription so long as ar§y is a matching subscription. Thus, a
set of DNF subscriptions is simply decomposed into a collection

bykas of simple subscriptions which can be handled by Opindex. This
11 81 61 1 2 straightforward approach to handle DNF subscriptions works for

k=3t T2 g =3+,) bothk-index and BE-Tree as well.
=9 o1 - Our approach can also be generalized with two extensions to

handle subscriptions in CNF. The first extension deals with pivot
Next, we estimate the number of predicates matching a query attribute selection and subscription partitioning. To correctly de-
eventE. tect matching CNF subscriptions, each subscripde now as-
sociated with a set of pivot attributes (instead of a single pivot at-
) _ K (M-1)(Fang1) tribute) since it is not necessarily the case that there exists a specific
predicates for E ish = O(Fg~ (1+ —3%=)). attribute inSthat must occur in every event that matce3o min-
imize the number of pivot attributes associated with a subscription
S= S A...ASn we choose the disjunctive clauSein Swith the
least number of predicaésind all the attributes i form the set
of pivot attributes ofS. Thus, a subscription with a set 6fpivot
attributes will appear il subscription lists.

LEMMA 7. Given an event E, the expected number of matching

PROOF Given a query event E of size m, we need to access
m subscription list{L(a,),...,L(a, }, where{Aq, ..., An} are the
attributes in E that are also pivot attributes. Clearly, each sub-
scription in Ly, must contain a predicate with attribute.ASince

_each SUbSC”pt'on.“St he}% subscrlptlons, there ar% predlca_te_s The second extension for subscriptions in CNF generalizes the
in L(a) that contain attribute A Since the average subscription ., nting-hased approach to detect matching subscriptions: we main-
size isl"avg, there are(Tavg — 1Y predicates in La, that do con- tain am-bit bitmap (instead of an integer counter value) for each
tain attribute A, and each of these predicates has a probability of - subscription, wherenis the maximum number of disjunctive clauses
™1 to contain an attribute in E. Therefore, the expected num- in a subscription. For a subscripti@with k disjunctive clauses,

ber of predicates in Ly that contain attributes in E is q}'(l+
(M-1)(Tavg—1)

)

8To break ties, we pick the disjunctive clause that minimizes the
sum of its attribute frequency.
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k < m, its bitmap is initialized and updated as follows. The ficst
bits in the bitmap ofS, which are used to represent whether khe
disjunctive clauses iB have been matched by an event, are initial-
ized to ones and the remaining bits are initialized to zeros. When-
ever any predicate in thé" disjunctive clause of is matched,

the bitmap is updated by setting it§ bit to zero. ThereforeS

struct Iten{

struct New ten{

is a matching subscription iff its bitmap value is 0. Note that this : m g: g
bitmap scheme is also applicable for théndex approach to han- ltemitem

dle CNF subscriptions. For the BE-Tree approach, which can han- }
dle only DNF subscriptions, a CNF subscription would need to be
rewritten to DNF which would result in a more complex subscrip-
tion with an increased matching overhead.

6.2 Supporting Complex Predicate Operators

class | ndex{
void insert(Newtemiten;
vector<lten> match(Query query);

class I ndex{
void insert(Newtemiten;
vector<lten> match(Query query);
vect or<i nt> mat chSub(Query query){
for(Newtemitem: match(query))
if(--counter[item eid]==0)
result.add(itemsid);
return result;

(b)

One key advantage of Oplndex’s two-level partitioning approach
is that each predicate Ii$1<5s.’f0p> can be indexed independently
with an efficient method that is appropriate for the predicate opera-
tor fop. In Section 4.2, we have presented an inverted-list structure ) ] ]
organization to efficiently suppoftp € {=,<,>}. In this section, improve per.formance. All the indexes are memory resident and im-
we illustrate Oplndex’s extensiblity feature by considering how to Plemented in C++. We conduct the experiments on a server with
support the prefix-match operator for string values. 128GB memory, 64KB L1 cache and 512KB L2 cache, running

The prefix-match operator is a useful string matching operator, C€ntos %.
which is also supported in SQL in the fornLI KE ' xyz% to re- 7.1 Data Generator

trieve records where the value of attribdtéegins with ‘xyz’. An . )
efficient approach to index string values for the prefix-match op- 10 generate synthetic datasets, we implemented our own data

eration is the well-known trie index. We can apply the trie index 9€nerator instead of using BE-Gen [20]. This provides us with bet-
to index subscription predicates involving the prefix-match oper- t€r flexibility to customize the generator for our specific require-
ator as follows. Given a prefix-match predicate with attribate ~ MeNts such as generating datasets with prefix operator. For uni-
and prefix string ©, we map this predicate into a string of the form formly distributed datasets, the generator follows the assumptions
“A#0”, where # denote a special delimiter that does not appear in in our complexity model in Section 4. All the attributes and operands
the attribute name and the attribute’s domain values. The collection i @ Subscription are randomly selected. Three operators <’
of transformed strings are then indexed using a trie index. and > are §upported. An input paramet8y controls the per-
Figure 6(a) shows a hypothetical implementation interface of céntage of='operators with the remaining percentages distributed
a trie index. Here] t em defines the structure of an index entry, €qually between the<’ and ">’ operators. The performance with
i nsert is afunction to insert a new entry into the index, amtich respect to the set operatats” and interval operatore;’ will be
is a function to retrieve all index entries that satisfies an input prefix- €valuated on the real datasets. The generator also generates datasets
match query (represented by the structQuery). Figure 6(b) in which both the attribute and operand follow the Zipf distribution.
shows the modifications to the index’s interface for the index to 1able 3 summarizes the parameters and their settings, with the
be integrated into Opindex’s framework. To index the transformed default values highlighted in bold in our synthetic datasets. We
strings for Oplndex, the new structukew t emnot only contains vary the subscription number from 1 million to 40 million to test
the transformed predicate string (representetitiay) but also the the scalability. The subscription size tends to be smaller than event

identifier of the subscription that contains the indexed predicate Siz&- Moreover, we varfmax from 4 to 20 andn from 20 to 120.
(represented bgi d) and a pointer to the subscription’s counter The default number of attributes in the synthetic datasets is set to

array (represented si d). In addition, there is also a new func- 20,000. Inour implementation, we set '.[he.number qf segments ina
tion mat chSub which calls the originahat ch function to retrieve  directory to be 32 and the number of bits in a machine word is 64.
matching subscription predicates and update their corresponding . . .
counter values; matching subscriptions are added ta ¢kel t Table 3: Paramgters and Settings on Synthetic Datasets
variable. Number of subscriptionhl 1M, 10M, 20M, 30M, 40M

Similarly, we can apply the above ideas to support other com- | Number of dimensiond 20K, 30K, 40K, 50K, 60K
plex predicate operators such as the regular expression matching Maximum subscription sizBmax | 4,8, 12, 16, 20
(RE-match) operator. Specifically, given a predicate list for the | Maximum event sizen 20, 40, 60, 80, 100, 120
RE-match operator, we can apply index methods such as the RE{ Percentage of equal operalar | 20%,40%, 60%, 80%, 100%
Tree [4] to index the collection of predicates in the list. In our | Value space 50, 200, 800, 3200, 12800
experiments, we shall evaluate the performance of Opindex for | Zipf 0,0.2,04,06,08,10
prefix-match predicates using the trie index.

Figure 6: Example to illustrate the extensibility of Oplndex

Besides the synthetic datasets, we also design two data-gener
ators from real datasets. The first generator uses the AOL query
yIog 9 to simulate keyword subscriptions. A keyword query is trans-
formed into a boolean expression. Each keyword is treated as an
attribute. Its operator is=’ and the operand is set to 1. For ex-
ample, the query “vldb hangzhou” will be converted(td db=1

7. EXPERIMENTS

This section presents results of an extensive performance stud
of our proposed Oplndex in comparison wifindex and BE-Tree.
The implementation ok-index and BE-Tree was kindly provided
by the authors of BE-Tree and in the form of binary executable.
We also compare with the unoptimized version of Opindex, de-
noted as OpIndex-BS, which does not use bucket and signature to°ht t p: / / ww. gr egsadet sky. con aol - dat a/
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A hangzhou=1) . In this way, the model serves as a filtering con-
dition of AND semantics used in keyword search. Moreover, we
can extend the model to consider the term frequency as a filtering
condition. For example(vl db&;[5,20] A hangzhouegi[ 2, 8])
is a more precise filtering condition. At the publisher side, we use 3
two datasets, Twitter and Wikipedia, as the event sources. We ran-
domly select 10000 documents from each dataset to publish. The 0 100 150 200 e T o 0 10 0 20
average event length (in terms of the number of keywords)4s 5 Node Capacity Node Capacity
in Twitter and 123 in Wikipedia. In our implementation, we first (a) Index Construction Time  (b) Event Matching Time
extract the 50000 most frequent keywords. The reason is that BE-
Tree crashes when the dimension is too high and we ugg080
as an upper bound. For both datasets, we generated two types of
subscriptions. One uses operator ‘=" and the other uses interval
operator £;'. The combination of subscription operators and event
sources results in four different datasets: TwitteFwittere, Wiki _ have the binary executable files for our comparison methods, we
and Wikic, . cannot report the exact index size. As an approximation, we run
The second data generator uses Ebay product information to genthe algorithms and report the memory usage in the event matching
erate subscriptions and events. In each web page of product de-Stage for BE-Tree anktindex. For our index, we do not deallocate

8000

=
o

6000

4000

uild Time (s)

2000

Avg Match Time (ms)

o N A O ©

Figure 7: Increasing node capacity of BE-Tree

scription, there is a section namétiem speci fi cs which con- ~ the memory occupied by the subscriptions after reading them from
tains structured information of the product. It lists the important input file, although our matching algorithm does not need to access
attributes and values about the product. We crawled @ prod- them any longer. Thus, we report our memory usage in the worst

ucts from Ebay and extracted 204 unique attributes. To generate ~ ¢ase Which is in favor of the two comparison indexes. For this
a subscription, we follow the assumption that the more common €xperiment, we are interested in examining two paramekeend

an attribute is, the more likely it will be used as a filtering con- 0- The results are shown in Figure 8(a) and Figure 8(b).

dition. However, the attribute distribution in Ebay is rather skew. ~ When the number of subscriptioféincreases from 1 million
For example, 31 percent of products are associated with attributeto 40 million, BE-Tree and our index demonstrate similar patterns
brand and 17 percent with attributeountry of manufacture. in memory usage. Their memory cost slowly grows and the con-
Hence, we count the frequendyA) for each attribute, take the ~ Sumption by BE-Tree is around 2 times more than our index. How-
log(f(A)), which is similar to handling f-idf and normalize it ~ €ver, the performance d¢findex degrades dramatically, taking up
to form a probability distribution. The attributes in the generated 7 times more memory. If the operator in a predicate is rOf k-
subscriptions will follow this distribution. At the publisher side, ~index has to transform it into multiple predicates of the fakrs 0.

we assume that the information provider publishes new products This replication causes the index to quickly run out of memory.

to subscribers. Therefore, we randomly pick@@ products with The value space also plays an important role. As shown in Fig-
different number of attributes to publish. ure 8(b), when we increasefrom 50 to 12800, k-index runs out

of memory and the usage when= 3200 ando = 12,800 cannot
7.2 Performance Trade-off in BE-Tree be reported. The performance of BE-Tree also degrades a lot. Its

memory usage grows from 1GB to 10GB. This is because koth

In [20], BE-Tree was reported to be not highly sensitive to the . L . . )
d!ndex and BE-Tree maintain attribute-value inverted lists and more

node capacity parameter (the maximum number of entries store . . i o
in a leaf node). However, we observed that, when the number inverted lists are built whew increases. Our Oplndex partitions

of dimensions grows to very large, this parameter plays an impor- the subscriptions into predicate Iists.wh(.)se key is the pivot attribute
tant role in the trade-off between index construction cost and event and operator. Its memory consumption is not affected kgtways

matching performance. In Figure 7, we vary the node capacity from 9-2 GB in Figure 8(b)).

5 to 250 and report the build time and average matching time in a

uniformly-distributed dataset. When the node capacity grows from 70— 40
510 150, the index construction becomes 15 times faster but the per- o
formance of query processing degrades 15 times as well. In [20], it
is suggested that the parameter should be set based on the matchg,
ing rate (the number of matching subscriptions in terms of the total £
number of subscriptions). Since in very high dimensional space,
the matching rate is smaller than 1%, we set the node capacity to 5

Oplndex
351 BE-Tree &
30 K-IND

T 60 BE-Tree
o 50 K-IND
[
13

40

3
20
10

Memory Usage (G)
N
o

Mem

iM 10M 20M 30M 40M 50 200 800 320012800

in the following experiments. We note that this essentially biased Number of Subscriptions Max Attribute Value
the experimental comparison in favor of BE-Tree. (a) Increasing\ (b) Increasingy

7.3 Experiments on Synthetic Datasets

The first set of experiments was conducted on the synthetic dataset.
We first report the memory usage and index construction time. Then,
we evaluate the matching performance with respect to parameters
S, Tmax M, 61 anda, followed by an experiment using the zipf ~ 7.3.2 Index Insertion Time

Figure 8: Memory Consumption

distribution. In this experiment, we use the index insertion time to approx-
. imately represent the update cost. The reason is that the binary
7.3.1 Memory Consumption executable files do not provide the command to support update op-

Recall that all the indexes are memory-resident. Our first task erations. If we consider an update as a deletion followed by an
is to examine the memory consumption. However, since we only insertion, the update cost will be around two times of the insertion
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cost. We report the performance with respeciNtoand I max in
Figure 9(a) and Figure 9(b).

Oplndex
Oplndex-BS
BE-Tree i
K-IND &5

100000 Oplndex

1e+007 BE-Tree &

1e+006
100000
10000
1000
100

10

10000

1000

Build Time (s)
Build Time (s)

100

A W r By b 10 g S
1M 10M 20M 30M 40M 4 8 12 16 20
Number of Subscriptions Max Subscription Size

(a) IncreasingN (b) Increasind max

Figure 9: Index Insertion Time

The index insertion time of Oplindex is three orders of magni-
tude better than BE-Tree and one order of magnitude bettekkthan

index. This is because in our index, the three operators are treate
in a uniform manner. The partition scheme is effective and the data
structure is scalable. The optimized version takes slightly longer
construction time than Opindex-BS as it needs to build buckets and

maintains additional fieldsk-index generates multiple predicates
when the operator is<’ or * >', which incurs much higher insertion

overhead. When the number of dimensions is very high, BE-Tree

incurs long processing time in attribute selection and other opti-
mization techniques to guarantee a good matching performance.

7.3.3 Matching time with increasing
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Figure 10: Matching time on synthetic datasets

The performance of pub/sub matching with increasing subscrip-

best event matching time, which is more than 10X better than
index. The optimized version scales better than Opindex-BS be-
cause when data size increases, the inverted list becomes longer and
the cost of binary search is more expensive. It becomes more effec-
tive to reduce the number of binary searchiesndex loses badly

for three reasons. First, partitioning by subscription size is not as
effective as partitioning by pivot attribute. Second, its number of
inverted lists is much larger than Oplndex, leading to higher lookup
cost. Third, its update of counter array is more expensive as it re-
quires random access on the whole array, whose size is the num-
ber of subscriptions. In comparison, our counter arrays are much
smaller and can be fit in the cache. BE-Tree scales well because of
the hierarchical clustering and the optimization mechanisms.

7.3.4 Matching time with increasinghax

The running time of increasinGmax on the three indexes are
shown in Figure 10(b). Our Oplndex demonstrates the best scala-
ility due to its data structures and optimized matching algorithm.

he running time ok-index increases linearly withnayx. For BE-
Tree, its performance slightly improves at the beginning but later
degrades dramatically whénaxincreases to 20.

7.3.5 Matching time with increasing

As shown in Figure 10(c), all the indexes are sensitivento
Whenm increases, the running time of Opindex scales similarly
to BE-Tree. The Opindex-BS does not scale as well and its per-
formance degrades to become close to BE-Tree whés large.
k-index performs the worst and does not scale well with

7.3.6 Matching time with increasirgy

Figure 10(d) shows the matching time when the percentage of
‘=" operator increases. The performance of all the indexes be-
comes better because™has high pruning power whea is large,
resulting in a small matching result set. Furtherméradex and
BE-Tree are more sensitive to this parameter than Oplndex, demon-
strating a dramatic performance improvement wlerbecomes
large. The reason is that they both need to maintain inverted lists
whose key is a pair of attribute name and value which naturally sup-
ports operator £” and requires operator transformation for other
operators as discussed in Section 3.

7.3.7 Matching time with increasing

As shown in Figure 10(e), the event matching time stays stable
in all the three indexes for increasing value space. BE-Tree and
k-index guarantee the filtering performance at the expense of more
memory resource and index construction cost. For our index, the
number of matching predicates barely changes whéncreases
from 50 to 12800. This can be verified by our complexity analysis
in which the matching probability is estimatedias- £ + 2 and
decreases from.B466 to 03334.

7.3.8 Matching time with increasirgpf

We also test the performance when the attribute and value of sub-
scriptions and events follow the Zipf distribution. The result in Fig-
ure 10(f) shows that when we gradually increase the skewness of
datasets, Oplndex always achieves the best performance and scales
better thark-index.

7.4 Experiments on AOL Search Log

The subscriptions derived from AOL query log support two types
of operators: equal operater® and interval operatore;’. We vary
the number of subscriptions from 1 million to 5 million and report

tion number is reported in Figure 10(a). Our index achieves the the index construction time in Figure 11(a) and Figure 11(b). When
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only operator =’ appears in the subscriptions, the build timekof
index and our index is close. However, when interval operator

is involved, index construction is longer flwindex. BE-Tree does
not scale well in the very high dimensional space. It requires two
orders of magnitude more insertion time than our index in the real
datasets.

The running time of matching tweets and Wikipedia articles us-
ing different operators is shown in Figures 11(c)-11(f). In Twit-
ter dataset, the event is small in length. Our index achieves very
good matching performance: the running time of Oplndex is 4-9
times faster than BE-Tree and two orders of magnitude better than
k-index. When the event length grows to more than 100, as shown
in the results of Wikipedia datasets, our index still shows the best
performance. The results show that our index works well when

the attribute distribution is skew. The pivot attribute is effective in
pruning.
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Figure 11: Matching time with increasirgd in AOL

7.5 Experiments on Ebay Dataset

The experiment results, including index construction cost and
event matching time, on Ebay dataset are reported in Figure 12.
Again, k-index spends similar construction time to our index and
orders of magnitude better than BE-Tree. Wirand M max in-

crease, Oplndex always demonstrates the best event matching per-

formance. We also note thatBsncreases, the performance advan-
tage over BE-Tree is more significant. This is because our index
first partition the subscriptions based on the pivot attribute. When
maxincreases, it is more likely to find a pivot attribute with small
frequency in the event sources to improve the pruning power. In
Figure 12(f), the performance of BE-Tree shows a clearly degrad-
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ing pattern. The set operatek is less powerful than operaterin
pruning. It takes more time to prune a longer subscription.
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Figure 12: Experiment Results on Ebay

7.6 Experiments on CNF and DNF Matches

As discussed in Section 6, Oplndex can be extended to support
CNF and DNF matching. Since the implementation of BE-Tree
andk-index does not support general CNF and DNF matches, we
only report the matching performance of Opindex in Figure 13.
The default maximum number of clauses is set to 5. When we
vary the number of subscriptions from 1 million to 20 million, the
matching time of DNF scales better than CNF because a CNF may
be inserted into multiple pivot attribute partitions, incurring more
scanning cost. When the number of clauses increases, the matching
time of CNF scales better because it has a higher probability to find
a clause with only one predicate. In that case, there is no replicate
insertion.
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Figure 13: Performance of CNF and DNF matches
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