
A Cost-based Method for Location-Aware
Publish/Subscribe Services

Minghe Yu Guoliang Li Jianhua Feng
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

yumh12@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn, fengjh@tsinghua.edu.cn

ABSTRACT
Location-based services have attracted significant attentions
from both industry and academia, thanks to modern smart-
phones and mobile Internet. To provide users with gratifi-
cations, location-aware publish/subscribe has been recently
proposed, which delivers spatio-textual messages of publish-
ers to subscribers whose registered spatio-textual subscrip-
tions are relevant to the messages. Since there could be large
numbers of subscriptions, it is necessary to devise an efficient
location-aware publish/subscribe system to enable instant
message filtering. To this end, in this paper we propose
two novel indexing structures, MBRTrie and PT-Quadtree.
Using the indexes, we devise two filtering algorithms to sup-
port fast message filtering. We analyze the complexities of
the two filtering algorithms and develop a cost-based model
to judiciously select the best filtering algorithm for different
scenarios. The experimental results show that our method
achieves high performance and significantly outperforms the
baseline approaches.

1. INTRODUCTION
Location-based services (LBS) such as Foursquare1 and

Yelp2 have been extensively deployed in many systems and
widely accepted by the Internet users. LBS includes two
important models: user-initiated model and server-initiated
model. The former, aka location-aware keyword search, re-
turns the relevant answers for each user-initiated spatio-
textual query (which includes the query location and query
keywords) [7, 5]. For example, considering a user who wants
to find a hotel nearby, she issues a spatio-textual query with
her current location and keywords “hotel two-beds room”
to an LBS system, which returns relevant answers by consid-
ering the spatial proximity and textual relevancy. The lat-
ter, aka location-aware publish/subscribe, delivers the spatio-
textual messages of publishers to relevant subscribers.

In this paper, we focus on location-aware publish/subscribe.

1http://foursquare.com
2http://www.yelp.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806427.

The subscribers register spatio-textual subscriptions. When
a publisher posts a spatio-textual message, the system in-
stantly delivers the message to the subscribers whose regis-
tered subscriptions are relevant to the message. To evaluate
the relevancy between spatio-textual messages and subscrip-
tions, we need to combine spatial proximity and textual rel-
evancy (see Section 2 for more details).

There are many real-world applications that require the
location-aware publish/subscribe services. For example, con-
sider a Groupon system. The subscribers (e.g., Groupon
customers) register their spatio-textual subscriptions (e.g.,
“The Avengers” at Melbourne University) to the system.
For each message posted by the publisher (e.g., a Groupon
message about movie “The Avengers: Age of Ultron”, at
Melbourne Downtown), the system delivers the message to
relevant subscribers. Location-aware publish/subscribe has
many other real applications, e.g., location-aware news de-
livery, location-aware advertisements, and location-aware mar-
ket analysis [14, 3].

A publish/subscribe system requires to support large num-
bers of subscriptions and a big challenge is to enable instant
message filtering [14, 3, 24]. Although Li et al. [14] pro-
poses an Rt-tree based method, which adds some selected
tokens from spatio-textual subscriptions into R-tree nodes
and uses the Rt-tree to filter messages, it cannot meet the
high-performance requirement, because it has low pruning
power on the textual part, especially for upper-level Rt-tree
nodes that contain too many selected tokens.

To address this challenge, we propose two novel spatio-
textual index structures, MBRTrie and PT-Quadtree. MBR-
Trie constructs a trie structure based on the textual descrip-
tion and integrates spatial information into trie nodes while
PT-Quadtree utilizes a quadtree to index spatial informa-
tion and adds the textual descriptions into the quadtree
nodes. Using the indexes, we devise two efficient filtering
algorithms. MBRTrie and PT-Quadtree have their own su-
periorities: MBRTrie is efficient for the messages with a small
number of tokens while PT-Quadtree is efficient for messages
with small spatial regions. To achieve high performance for
various settings, we analyze the complexities of the two algo-
rithms and develop a cost-based model to judiciously select
the best filtering algorithm for various scenarios.

To summarize, we make the following contributions.

(1) We propose two spatio-textual index structures, MBR-
Trie and PT-Quadtree. Based on the two index structures,
we propose two efficient filtering algorithm.

(2) We analyze the complexities of the two filtering algo-

693

rithms and develop a cost-based model that selects the best
algorithm to filter a message.
(3) Based on the cost model, we develop a new filtering
algorithm and develop several pruning techniques.

(4) We have implemented our method. The experimental
results on real datasets show our method achieves high per-
formance and significantly outperforms existing approaches.

The rest of this paper is organized as follows. In Section 2,
we formulate the problem and review related works. We
present an MBRTrie index and develop a filter-verification
framework in Section 3 while PT-Quadtree index structure
is proposed in Section 4. Then we devise a cost-based algo-
rithm in Section 5. The experimental results are shown in
Section 6. And finally we conclude in Section 7.

2. PRELIMINARIES
We first formalize the location-aware publish/subscribe

problem and then review related works.

2.1 Problem Formulation
In a location-aware publish/subscribe system, publishers

post spatio-textual messages and subscribers register sub-
scriptions to capture their interests. A subscription s in-
cludes a textual description s.T and spatial information s.R,
denoted by s = 〈T,R〉. The spatial information is used to
capture a subscriber’s most interested region. In this pa-
per we use the well-known minimum bounding rectangle
(MBR) to denote a region s.R. We use the bottom-left
corner and top-right corner to describe an MBR, denoted
by s.R = 〈(xbl, ybl), (xtr, ytr)〉. Especially if xbl = xtr and
ybl = ytr, the region is reduced to a point. The textual de-
scription is used to capture a subscriber’s content interests,
denoted by a set of tokens s.T = 〈t1, t2, · · · , t|s.T |〉.

A message m is denoted by m = 〈T,R〉 in which m.T and
m.R have the same meaning as those of subscriptions. If the
spatial information of a message is a point, we call it point
message; otherwise it is called a range message.

Given a subscription s and a message m, s could be an
answer of m if s and m have spatial overlap and all the
tokens in s are contained in m3, i.e. they satisfy

(1) Spatial constraint : m.R ∩ s.R 6= φ and;

(2) Textual constraint : m.T ⊇ s.T .

Based on the notations, we formalize the location-aware
publish/subscribe problem.

Definition 1 (Location-aware Publish/Subscribe).
Given a set of subscriptions S = {s1, s2, · · · , s|S|} and a
message m, a location-aware publish/subscribe system deliv-
ers m to si ∈ S if m.R ∩ si.R 6= φ and m.T ⊇ si.T .

For example, consider the twelve subscriptions in Figure 1.
For a point message mp = ({b, c, d, e, f}, (26, 14)), subscrip-
tion s4 = ({b, c, d}, 〈(20, 10), (28, 18)〉) is an answer of mp.
s3 = ({b, c, d}, 〈(20, 32), (35, 35)〉) is not an answer as it does
not contain the point ofmp. s1 = ({a, b, c}, 〈(25, 0), (30, 20)〉)
is also not an answer as it has a token “a” which does not
appear in mp. We deliver subscriptions s4, s7, s10 to message
mp. For a range messagemr = ({a, c, d, e}, 〈(10, 10), (40, 40)〉),
we deliver the subscriptions s2, s10, s11 to mr.

3Our method can efficiently support other metrics, and due
to space constraints, we omit the details.

Figure 1: Subscriptions and messages

2.2 Related Work
Location-Aware Publish/Subscribe. Li et al. [14] pro-
posed theRt-tree to support location-aware publish/subscribe,
which extended the R-Tree by selecting some representative
tokens from subscriptions and adding them into R-tree nodes
to enable textual pruning. However, for upper-level nodes,
there are many tokens and thus it has low pruning power
on textual part. We have compared with this approach and
our method significantly outperformed it (see Section 6).

Hu et al. [11] studied the parameterized location-aware
publish/subscribe, which requires subscribers to specify pa-
rameters to enable personalize filtering. Chen et al. [3]
studied the problem of matching boolean range continuous
queries to streaming objects. Guo et al. [9] studied on fil-
tering dynamic streams for continuous moving boolean sub-
scriptions. Obviously they are different from our problem.
Wang et al. [19] proposed a cost-based method to support
spatial keyword queries using a tree structure. Different
from our works, they utilized keyword partition and space
partition in one tree structure when constructing index for
queries based on expected matching cost. And they com-
puted the cost based on the number of queries associated to
each partition and the probability that whether the partition
is explored during object matching, instead of the complex-
ity of filter and verification steps.

Location-Aware Keyword Search: There are several
studies on location-aware keyword search [7, 25, 13, 2, 16,
12]. Felipe et al. [7] proposed IR2-Tree which combines an
R-tree with text signatures to find top-k answers. Cong et
al. [2] presented a location-aware textual search model based
on integrating R-tree and inverted files. Lu et al. [16] studied
on supporting reverse spatial textual search. All these works
designed algorithms to find answers based on the given lo-
cation and keywords. For the region-based keyword search
problem, Jin et al. [12] proposed a hybrid model to return
objects that contain related keywords within a given region.
Zhou et al. [25] and Hariharan et al. [10] proposed different
strategies for combining R∗-tree and inverted lists.

In addition, location-aware keyword search has been ap-
plied into different scenarios. For example, Yao et al. [23]
presented a model to answer similarity string queries in spa-
tial databases. Chen et al. [4] studied on query processing in
geographic search engines based on spatial keyword search.
Roy and Chakrabarti [17] designed a location-aware type
ahead search. Wu et al. [20] studied on processing continu-
ously moving spatial keywords queries.

694

Different from location-aware keyword search, location-
aware publish/subscribe services adopt a push model which
delivers message to relevant subscribers.

Traditional Publish/Subscribe Services: Foltz and Du-
mais [8, 21, 22] studied on selecting textual information un-
der space model from IR perspective. Fabret et al. [6] de-
signed a “processor cache conscious” algorithm for matching
subscriptions. Liu et al. [15] utilized synopses to construct
an index to support the publish/subscribe problem.

3. MBRTRIE BASED METHOD
In this section, we first propose an index MBRTrie in Sec-

tion 3.1, and devise a filtering framework in Section 3.2.
Then we develop efficient filtering algorithms in Section 3.3.

3.1 MBRTrie Index Structure
Before index construction, we first fix a global order for

tokens in subscriptions, e.g., the alphabetical order. Then
for each subscription, we sort its tokens based on this order.
Given a sorted token set T = 〈t1, t2, · · · , t|T |〉, 〈t1, t2, · · · , ti〉
is called a prefix of 〈t1, t2, · · · , tj〉 if i ≤ j ≤ |T |. A token
set 〈t1, t2, · · · , tx〉 is smaller than token set 〈t′1, t′2, · · · , t′y〉 if
ti < t′i and tj = t′j for j < i. We also sort the subscriptions
based on their token-set order, and associate each subscrip-
tion with a subscription ID.

We construct an MBRTrie for subscriptions as follows. For
each subscription, we utilize its token set to build a unique
path from the root to a leaf in which each trie node is as-
sociated with a token. The root and leaf have an empty
token ε. For simplicity, a trie node is interchangeably used
with its corresponding token in this paper. Based on this
structure, the subscriptions with a common prefix of token
sets share the same ancestors. And children of a node are
sorted by the corresponding token. Each leaf has an inverted
list of subscriptions’ IDs which contains the corresponding
token set. As subscriptions are sorted by the token-set or-
der, we associate each node n with a subscription ID range
[nl, nu], where nl and nu respectively denote the minimum
and maximal IDs of subscriptions under this node (which are
subscriptions on the inverted lists of its leaf descendants).

For each node n, we also associate it with a node MBR,
which is the minimum bounding rectangle of MBRs of sub-
scriptions under node n, denoted by nmbr. And if the MBR
of a message m has no overlap with nmbr, the subtrie rooted
at node n can be pruned since all the subscriptions under it
have no spatial overlap with m.

For example, Figure 2 gives an MBRTrie of subscriptions
in Figure 1 with alphabetical order. The MBR of node 1 is
〈(10, 0), (30, 40)〉, which is the minimum bounding rectangle
of MBRs of subscriptions under node 1, i.e., s1 and s2. Node
8 has a subscription range [s3, s9]. That means subscriptions
s3 to s9 are under this node. In other words, subscriptions
with token “b” (node 8) as the first token must be in [s3, s9].

Space Complexity: Suppose the average token number of
subscriptions is Savg, which is usually very small, e.g., 3.
The number of nodes in the MBRTrie is at most Savg × |S|.
As many token sets share prefix, the real number is smaller
than it. Thus with the total length of inverted lists |S|, the
space complexity of MBRTrie is O(Savg × |S|).
Updates: For a new subscription, we only need to insert it
into MBRTrie and update the MBRs and subscription ranges
of the nodes on the path from the root to the new inserted
leaf. As subscription IDs are sorted in order, we can re-

s11s3 s4s1 s2 s8 s9 s12s10s7

0

1

7

2

3

5

6

8 23 26

16
9

19 24 27 29

1710
14

25 28 3020

21

4

12

s5 s6

11 13 15 22

s1 s2
s3 s9

s11 s12

s3 s5
s7 s8

(0,0), (40, 40)

(20,10), (35, 35)
(0,20), (30, 40)

(10,0), (30, 40) (0,0), (20, 15)

18

Figure 2: MBRTrie index by an alphabetical order

serve some IDs for accommodating future insertions. For
deletions, we can use a special mark to denote the deletions.

3.2 A Filtering Framework
To achieve high performance, we want to only visit a small

number of relevant trie nodes. Thus in this subsection, we
will discuss how to filter MBRTrie nodes.

When traversing MBRTrie, we only need to visit the nodes
having leaf descendants which contain subscriptions as re-
sults of message. However an MBRTrie node may have a
lot of leaf descendants and checking whether it satisfies this
condition is expensive. Therefore we propose a filter-and-
verification framework. The first step identifies a set of can-
didate nodes (there is an answer under the node) and the
second step verifies the subscriptions on the inverted lists of
leaf descendants of these candidate nodes.

Step 1 - Filter: For a trie node n, we prune node n, if

(1) MBR Filter: nmbr ∩ m.R = φ, which means any sub-
scriptions under node n have no spatial overlap with m; or

(2) Token Filter: n 6∈ m.T (The token of n is not inm.T). As
all subscriptions under node n containing this token which
does not appear in m, it invalidates the textual constraint.

Step 2 - Verification: For each leaf node surviving in the
filter step, the subscriptions on its inverted list are candidate
answers of message m. All of them must already satisfy the
textual constraint since all the tokens in their ancestors ap-
pear in the message (otherwise this node should be pruned).
However the subscriptions may not satisfy the spatial con-
straint because the node MBR contains some regions that
have no overlap with the subscriptions in its leaf descen-
dants. Therefore we need a verification step to do spatial
checking for the subscriptions.

In the verification step, we examine all subscriptions on
the inverted lists of leaf candidate nodes. And time com-
plexity is O(

∑
l |Il|), where l denotes a leaf candidate node

and Il is the inverted list of l. In the filter step, we traverse
MBRTrie to find candidate nodes. Given a node, the MBR
filter checks whether its node MBR has spatial overlap with
the message with complexity O(1). For token filter, we find
all the trie nodes which appear in the message. Next we
introduce several algorithms to efficiently find such nodes.

3.3 Filtering Algorithms
Given a message m, we first sort the tokens in message

m based on a global order (e.g., alphabetical order) and
remove the duplicates. Let T = 〈t1, t2, · · · , tN 〉 denote the
sorted token set of m. Next we propose three algorithms to
implement the token filter.

695

ProbeTokenSet - Use trie nodes to probe token sets:
The first method traverses MBRTrie in pre-order. For each
node n, we check whether it satisfies two filters. If not, we
prune node n; otherwise we access its children. Iteratively,
we can find all leaf candidate nodes.

As tokens in T are sorted, we can do a binary search to
check whether a node n appears in T . The time complexity
for checking is O(logN), where N is the number of tokens
in T . In the worst case, we need to enumerate all trie nodes,
thus the worst-case complexity is O(M × logN), where M
is the number of nodes in MBRTrie. Next we analyze the
average-case complexity.

Suppose there are totally D distinct tokens which are in-
dependent. That is given a node, any token has the same
probability to appear as a child of it, which is 1

D
. Sup-

pose there are Li nodes in the i-th level (the level of the
root is 0). For the root, the probability to visit its chil-
dren in the first level is 1. As there are L1 nodes in the
first level, the time complexity for the first-level nodes is
O(L1× logN). Each node in this level has N

D
probability to

appear in T , which means the probability to access nodes in
the second level is N

D
. As there are L2 nodes in the second

level, the average-case complexity for the second-level nodes
is O(L2× N

D
× logN). Similarly the average-case time com-

plexity for the i-th level nodes is O(Li × (N
D

)i−1 × logN).
Thus the average-case time complexity for all nodes is

O
(
logN ×

Ht∑
i=1

(Li × (N
D

)i−1)
)
,

where Ht is the height of MBRTrie.
In practice, N � D, and for i ≥ 3, Li× (N

D
)i−1× logN is

close to 0. The average-case time complexity can reduce to

O
(
(L1 + L2×N

D
)× logN

)
.

ProbeTrie - Use the tokens to probe trie nodes: The

second method visits tokens in T in order. For each token
ti ∈ T , it checks whether the root has a child with token ti
and has spatial overlap with m. If there is no such node, it
breaks and visits the next token ti+1; otherwise, it locates
the node with token ti, and as tokens in T are sorted in
order, next we repeat this step for each token after ti in T .
Iteratively, it can find all leaf candidate nodes.

To check whether a trie node has a child with token ti, we
can do a binary search among all the children of this node.
Suppose the average fanout of a node is F . The complexity
to do the checking is O(logF). In the worst case for each
combination of tokens in T , we need to do a binary search
on the trie, thus the worst-case complexity is

O
(∑N

i=1

(
N
i

)
× logF = 2N × logF

)
.

Next we give the average-case complexity. The fanout of
the root is L1. Thus the average-case time complexity for the
first-level nodes is O(N × logL1). Considering the i-th level
nodes, their parents are in (i− 1)-th level and have (N

D
)i−1

probability in T . The average fan-out of (i − 1)-th level
nodes is Fi−1 = Li

Li−1
. The average-case time complexity for

the i-th level nodes is O
(
logFi−1 ×Li−1 × (N

D
)i−1

)
. So the

average-case complexity is

O
(
N ×

∑Ht
i=1

(
logFi−1 × Li−1 × (N

D
)i−1

))
.

In practice, for i ≥ 3, logFi−1 ×Li−1 × (N
D

)i−1 is close to
0. Thus the average-case time complexity can reduce to

O
(
N × logL1 +N × logF1 × L1 × N

D

)
.

Algorithm 1: MBRTrie (S,m)

Input: S: The subscription set; m: A message
Output: R: Answers of m
begin1

Fix a global token order ;2

Build an MBRTrie with root r ;3

T ← sorted distinct token set of m ;4

Initialize a candidate node set CN ;5

if rmbr ∩m.R 6= φ then6

MBRTrie-Filter (r, m.T m, CN) ;7

R = MBRTrie-Verify (m, CN) ;8

end9

Function MBRTrie-Filter(n, Tn, m, CN)

Input: n: A trie node; Tn: Token set; m: A message
CN : Candidate leaf node set

begin1

if n is a leaf node then CN ← n ;2

P = SelectPair (n, Tn, m) ;3

for each pair 〈c, Tc〉 ∈ P do4

MBRTrie-Filter (c, Tc, m, CN);5

end6

Function SelectPair(n, Tn, m)

Input: n: A trie node; Tn: Token set; m: A message
Output: P: Candidate node set
begin1

if |Tn| × log |n| < |n| × log |Tn| then2

for each token t of Tn do3

Use t to do a binary search on n’s children;4

if child c with label t & cmbr ∩m.R = φ then5

P∪ = 〈c, Tc〉; //Tc : tokens after c in Tn6

else7

for each child c of n & cmbr ∩m.R = φ do8

Use c to do a binary search on Tn;9

if c ∈ Tn then10

P∪ = 〈c, Tc〉; //Tc : tokens after c in Tn11

end12

Function MBRTrie-Verify(m, CN)

Input: m: A message; CN : Leaf candidate node set
Output: R: Answers of m
begin1

for each node n ∈ CN do2

for each subscription s ∈ In do3

if s.R ∩m.R 6= φ then R← s ;4

end5

Figure 3: MBRTrie algorithm

A Cost-based Method: Notice that upper-level nodes
usually have many children, thus it is efficient to use tokens
to do a binary search on the trie structure. On the contrary,
it is more efficient to use trie nodes to probe tokens in mes-
sage on the lower-level trie nodes which have few children.
Based on this observation, we propose a cost-based method.

Consider a candidate node n. There exists one and only
one token in T that matches n (as tokens in T are distinct).

696

Suppose it is ti. Let Tn = {ti+1 · · · tN}. We call 〈n, Tn〉 a
candidate pair if n satisfies the spatial constraint. If 〈n, Tn〉
is a candidate pair, we try to find candidate pairs from n’s
children. As tokens in T are sorted, n’s children can only
match tokens in Tn. Based on this observation, we propose
an extension-based method to find candidate pairs. Let P
denotes the candidate-pair set for n’s children, |n| denotes
the number of n’s children. We compute P as follows.

(1) If |Tn|× log |n| < |n|× log |Tn|, we use each token tj ∈ Tn

to probe n’s children. If a child c matches tj and cmbr ∩
m.R 6= φ, 〈c, Tc = 〈tj+1, · · · , tN 〉〉 is a candidate pair and
added into P.

(2) Otherwise, we use each child of n to probe token set Tn.
For a child c, if c matches a token tj ∈ Tn and cmbr∩m.R 6=φ,
〈c, Tc = 〈tj+1, · · · , tN 〉〉 is a candidate pair and added to P.

Next we repeat the above steps for pairs in P. Iteratively
we can find all candidate pairs. And based on the candidate
pairs, we can find the leaf candidate nodes.

Figure 3 illustrates the MBRTrie algorithm. It first fixes
a global token order and constructs an MBRTrie (line 2- 3).
Then it calls function MBRTrie-Filter to find candidate
nodes (line 7). Finally it verifies the candidates and gets the
answers by calling function MBRTrie-Verify (line 8).

MBRTrie-Filter first checks whether the node in a can-
didate pair is a leaf node. If yes, we select it into leaf candi-
date node set (line 2). Next MBRTrie-Filter adaptively
selects a better method to find candidate pairs by calling
function SelectPair (line 3). If MBRTrie-Filter finds a
candidate pair, it recursively finds candidate pairs based on
the current pair (line 5).

Time Complexity: As we select a better method to find
trie nodes, the average-case complexity of the filter step is

CostFT = O
(Ht∑

i=1

min
(
logN×Li, N×logFi−1×Li−1

)
×(
N

D
)i−1

)
.

(1)
Suppose there are candT candidate nodes and the inverted

lists of leaf nodes are I1, I2, · · · , IcandT . In the verification
step, the time complexity is

CostVT = O(

candT∑
i=1

|Ii|). (2)

An algorithm should satisfy (1) completeness: any sub-
scription satisfying the spatial constraint and the textual
constraint must be found by the algorithm; and (2) correct-
ness: any subscription found by the algorithm must satisfy
the spatial constraint and the textual constraint. The MBR-
Trie satisfies the two properties as formalized in Theorem 1.

Theorem 1. The MBRTrie algorithm satisfies complete-
ness and correctness.4

For example, consider messagemp = ({b, c, d, e, f}, (26, 14))
and the MBRTrie in Figure 2. As there are 5 tokens in the
message and the root has 4 children, we use trie nodes to
probe the token set and find three candidate nodes 1, 8, 23.
Node 26 is pruned as its MBR does not contain the message
point. For node 1, we find an answer s1 in its child node
2. For node 8, we select its children 9, 16 and prune nodes
14 and 19. Iteratively we can find all answers for the mes-
sage mp. Here we prune sixteen nodes and only visit fifteen

4
We omit proofs of Lemmas and Theorems due to space constraints.

nodes in MBRTrie, and the visisted nodes are nodes 0∼4,
8∼11, 16∼18, and 23∼25.

4. PT-QUADTREE BASED METHOD
The node MBRs of the upper-level nodes in the MBRTrie

cover large numbers of subscription MBRs and may involve
many unnecessary regions. Thus they may have low spatial
pruning power. To address this issue, we propose a quadtree-
based index structure in Section 4.1, and then introduce
efficient filtering algorithms in Section 4.2.

4.1 Pivotal-Token Quadtree
To facilitate spatial pruning, we construct a qudatree for

MBRs of subscriptions. Firstly we generate a minimal region
to cover all subscription MBRs and select the center of the
region as root node, and then divide the region into four
subregions. Recursively, we divide each subregion into four
small regions. For each region, we terminate its division
and take it as a leaf node if (1) the number of subscription
MBRs that have overlap with the region is smaller than a
threshold τnum; or (2) the area of the region is smaller than a
threshold τarea. For each leaf node, we maintain an inverted
list of sorted IDs of subscriptions whose MBRs have overlap
with the region.

If many MBRs have overlaps, they may appear in many
inverted lists of leaf nodes. To address this issue, we can
use the MX-CIF quadtree implementation [18], which asso-
ciates each MBR with the quadtree node corresponding to
the smallest region that contains the MBR. In other words,
the subscription IDs can be associated with both leaf and
non-leaf nodes, and each subscription ID appears in one and
only one inverted list. Moreover, given an extra space buffer,
we can select some regions and push down the subscription
IDs in these regions to their leaf descendant regions.

To support textual pruning in the quadtree, we integrate
textual description into nodes. A straightforward method
associates a node with all the distinct tokens of subscriptions
that have overlap with it. Based on this method, given a
message m, we traverse the quadtree from root. For each
node, if it has overlap with m.R and there exists a token
associated with the node appearing in m.T , we access the
node. Otherwise we prune the node, as it does not satisfy
the spatial or textual constraint.

For example, consider the quadtree in Figure 4. Sub-
scriptions s3, s5, s9 are in node 1. The token set associated
with node 1 should be the union of their token sets, i.e.,
{b, c, d, f, h}. For range message mr = ({a, c, d, e}; 〈(10, 10),
(40, 40)〉) in Figure 1, as node 1 has spatial overlap with mr

and contains a token “c” that appears in the token set, we
need to access the node.

In the straightforward method, the number of tokens as-
sociated with a node is very large and the pruning power
is low. For instance, in the last example we should prune
node 1, because although node 1 shares token ”c” with mes-
sage mr, all subscriptions under this node contain another
token ”b” which does not appear in the message. This is
not achieved when we access node 1. To address this issue,
we propose a pivotal-token quadtree to reduce the number of
tokens associated with nodes. Next we discuss how to select
and associate pivotal tokens with each node.

For a leaf node, we generate its pivotal-token set by select-
ing a single token from each subscription on its inverted list
to represent it. For an internal node, its pivotal-token set is
the union of its children’s pivotal-token sets. Obviously if the

697

s11s9s3 s3 s8 s6s12 s10 s1s5 s2 s2

s1 s4
s7 s9

NE NW SW SE

NE NW SW SE

(20,20), (40, 40) (0,20), (20, 40) (0,0), (20, 20) (20,0), (40, 20)

0

1

2 3 4 5

6

7 8 9

NE NW SW SE NE NW SW SE NE NW SW SE

10

11

12 13 14 15

16

17 18 19 20

| {b, d}

{b} | | {b, d} | {d} | {b, d}

d b d d d d b b b

Figure 4: PT-Quadtree index structure

pivotal-token set has no common token with the message, we
can prune the node, as stated in Lemma 1.

Lemma 1. Given a quadtree node n and a message m, if
n’s pivotal-token set has no common token with m.T , we can
prune the node.

To save the space and improve the performance, we want
to minimize the pivotal-token set. However like the mini-
mum hitting set problem, this is an NP-hard problem [1].
Thus we propose a greedy algorithm. First we select the
largest df token into the pivotal-token set and remove the
subscriptions contain it. Then the largest df token in the
rest of subscriptions is put into pivotal-token set. Iteratively
we can generate the pivotal-token set for leaf nodes until no
subscription left. For each internal node, its pivotal-token set
is generated by computing the union of its children’s sets.

We can further remove tokens for internal nodes as fol-
lows. Given a node n, if all its children contain a token t,
we will keep t in n, and remove it from all four children.
In this way, when checking whether t is contained in the
message, we just do it for parent and not repeat for its de-
scendants. Utilizing this idea, we keep two pivotal-token sets
for a quadtree node: a cover set and a non-cover set. In
the cover set, we keep the token appearing in all four chil-
dren. For the no common tokens are kept in non-cover set,
and they are not removed from children. We call such a
quadtree Pivotal-Token Quadtree (PT-Quadtree).

For example, the subscriptions in Figure 1 can be con-
structed as a PT-Quadtree shown in Figure 4. Consider leaf
nodes 2, 3, 4, 5 with subscriptions s3, s3, s9, s5. As the four
nodes contain token “b”, we select token “b” as their pivotal
tokens. Obviously token “b” should be kept in their parent’s
cover set, i.e., node 1. For nodes 17, 18, 19, 20, we respec-
tively select pivotal tokens d, b, b, b. As their pivotal-token
token is not the same, the cover set of their parent (node
16) is φ and the non-cover set is {b, d}.
Space Complexity: Suppose the height of PT-Quadtree is
Hq and there are Nq nodes in the quadtree. If we use the
MX-CIF Quadtree [18], each subscription is stored only at
the node corresponding to the smallest region that contains
the subscription MBR, and the sum of lengths of all inverted
lists is |S|. To achieve high performance, we want to keep
inverted lists only for leaf nodes, and the inverted-list size
is α× |S|, where α is a parameter and depends on datasets.
There are at most |S| pivotal tokens in leaf nodes, and each
token is at most stored Hq times. Thus the maximal size
of pivotal-token sets is O(|S| × Hq). In practice, as many
subscriptions share tokens, the size is much smaller. Thus
the overall space complexity is O(Nq + α× |S|+ |S| ×Hq).

Updates: For a new subscription, we insert into PT-Quadtree
and select a pivotal token to insert into the non-cover set of
nodes on the path from root to the leaf (if the non-cover

Algorithm 2: PT-Quadtree (S,m)

Input: S: The subscription set; m: A message
Output: R: Answers of m
begin1

Build an PT-Quadtree with root r;2

Initialize a candidate node set CN ;3

PT-Quadtree-Filter (r, m, CN) ;4

R = PT-Quadtree-Verify (m, CN);5

end6

Function PT-Quadtree-Filter(n, m, CN)

Input: n: An PT-Quadtree node; m: A message
CN : Leaf candidate node set

begin1

if n ∩m.R == φ then return CN ;2

if n.CSet ∩m.T 6= φ then3

Traverse the subtree rooted at n, and add the4

leaf nodes that have overlaps with m.R to CN ;
return CN ;5

if n.NSet ∩m.T 6= φ then6

for each child c of n do7

PT-Quadtree-Filter (c, m, CN);8

end9

Function PT-Quadtree-Verify(m, CN)

Input: m: A message; CN : leaf candidate node set
Output: R: Answers of m
begin1

for each node n ∈ CN do2

for each subscription s ∈ In do3

if s.T ⊆ m.T&s.R ∩m.R 6= φ then R← s;4

end5

Figure 5: PT-Quadtree algorithm

set does not contain the token). For deletions, we can use a
special mark to denote the deletions.

4.2 Filtering Algorithms
For the PT-Quadtree, we introduce a filter-and-verification

framework. In the filter step, we generate a set of leaf candi-
date nodes. Then we verify the subscriptions on the inverted
lists of leaf candidate nodes in the verification step.

Step 1 - Filter: We traverse PT-Quadtree in a depth-first
order. For each PT-Quadtree node n, let n.CSet and n.NSet
respectively denote n’s cover set and non-cover set.

(1) If n ∩m.R = φ, we prune node n based on spatial con-
straint;

(2) If n.CSet ∩m.T = φ and n.NSet ∩m.T = φ, we prune
the node as it invalidates textual constraint;

(3) If n∩m.R 6= φ, n.CSet∩m.T = φ, and n.NSet∩m.T 6=
φ, n is a candidate. We repeat the filter steps for its children.

(4) Otherwise n ∩ m.R 6= φ and n.CSet ∩ m.T 6= φ, sub-
scriptions on the inverted lists of n’s leaf descendants share
a common token with m. Thus we only check whether the
descendants of n satisfy the spatial constraint. If yes, these
leaf nodes are candidate nodes; otherwise we prune them.

Step 2 - Verification: Given a leaf candidate node, as
subscriptions on its inverted list may not satisfy both con-
straints, we need a verification step to examine the subscrip-
tions to get the final answers.

698

Next we devise an PT-Quadtree based algorithm as shown
in Figure 5. First we construct a PT-Quadtree (line 2). Then
for the message m, we call function PT-Quadtree-Filter
to find candidate nodes from the root (line 4). Consider
a candidate node n. PT-Quadtree-Filter first checks
whether node n has an overlap with m.R. If not, we prune
it (line 2); otherwise, we check whether it satisfies the tex-
tual constraint as follows. First if n.CSet ∩ m.T 6= φ, we
need to access all of n’s descendants (line 3, 4); otherwise,
we check whether n.NSet∩m.T 6= φ (line 6). If yes we need
to visit n’s children (line 8); otherwise, we prune the node.
Iteratively we can get all leaf candidate nodes. Theorem 2
formalizes the correctness of our algorithm.

Theorem 2. The PT-Quadtree algorithm satisfies com-
pleteness and correctness.

For example, consider PT-Quadtree in Figure 4. For range
message mr in Figure 1. As the non-cover set of root con-
tains token “d” which appears in mr.T , we need to visit its
children. Node 1 is pruned as its pivotal-token set has no
overlap with the token set of mr. We can also prune nodes
14, 19, and 20 as they have no spatial overlap with mr. Thus
the leaf candidate nodes are 7, 10, 12, 17. Next we verify
the subscriptions s2, s11, and s10 on their inverted lists.

Time Complexity: We can check whether m.T∩n.CSet 6=
φ(m.T ∩ n.NSet 6= φ) using the cost model in Section 3.3.
The time complexity isO

(
min(logN×|n.CSet|, log |n.CSet|×

N)
)
, where N is the number of tokens in m.T . Suppose

there are candQ leaf candidate nodes and the height of PT-
Quadtree is Hq. The complexity of the filter step is

CostFQ = O
(
Hq × candQ×min(logN ×AvgRT , logAvgRT ×N)

)
,

(3)

where AvgRT is the average size of pivotal-token sets.
Note that each subscription of candidate nodes may not

have overlap with the message. To find the final answers
that satisfy both two constraint, we can use each token in
s.T to do a binary search on m.T and the complexity is
O(|s.T | × logN). Suppose there are candQ candidate leaf
nodes, the inverted lists of them are I1, · · · , IcandQ , and the
average token size of the subscriptions is Savg. The time
complexity of the verification step is

CostVQ = O(

candQ∑
i=1

|Ii| × Savg × logN). (4)

5. COST-BASED ALGORITHMS
In this section, we first compare MBRTrie and PT-Quadtree

algorithms in Section 5.1. Then we propose a pruning tech-
nique in Section 5.2 and give a cost-based model in Sec-
tion 5.3. Finally, we propose an algorithm in Section 5.4.

5.1 Comparison of MBRTrie and PT-Quadtree

In the verification step, MBRTrie only verifies the spa-
tial constraint (Section 3.3) and PT-Quadtree needs to verify
both spatial constraint and textual constraint (Section 4.2),
thus MBRTrie has lower complexity than PT-Quadtree in ver-
ification. Next we consider the filter step of two methods.

Let CostFT and CostVT respectively denote the cost of the
filter step and the verification step of MBRTrie which can be
computed by Equations 1 and 2, and the cost of filter and
verifications steps of PT-Quadtree are denoted by CostFQ and

CostVQ, respectively. They can be computed by Equations 3
and 4. We consider the following two cases.

Case 1: CostFQ > CostFT . This happens when the message’s

MBR is large, for example. CostFQ will be very large. More-
over MBRTrie is very efficient to verify the candidates in the
verification step, thus we employ the MBRTrie algorithm.

Case 2: CostFQ ≤ CostFT . In this case, we employ the PT-
Quadtree algorithm in the filter step since PT-Quadtree is
more efficient than MBRTrie in the filter step. For example,
for a point message, as PT-Quadtree only accesses a single
quadtree node in each level, CostFQ is very small. And in the

verification step CostVQ is expensive, we have two strategies
to verify candidates. The first verifies results as discussed in
PT-Quadtree algorithm directly. The second utilizes MBR-
Trie algorithm to do further pruning by their inverted lists
after generating leaf candidate nodes by PT-Quadtree. The
detail of this method is described in the next subsection.

5.2 List Pruning
In the MBRTrie, subscriptions are sorted in the token-set

order. Therefore subscriptions under node n must be in a
range [nl, nu] which means all the ID of subscriptions in the
inverted list of n’s leaf nodes are between nl and nu. Based
on these ranges we can integrate MBRTrie and PT-Quadtree
to filter a message. First we consider a point message.

For a leaf candidate node found by PT-Quadtree for the
point message, there are two strategies to find answers from
its inverted list I. The first is to directly verify the sub-
scriptions in I. The second is to utilize MBRTrie and I to
do further filtering as follows.

When we traverse MBRTrie, for a trie node n with sub-
scription range [nl, nu], we check whether I contains a sub-
scription in [nl, nu]. We prune node n if there is no such
subscription, as any subscription under it will not satisfy
the spatial constraint. We call this technique list pruning
which can prune many unnecessary subscriptions.

We utilize a binary search to check whether I has over-
lap with [nl, nu]. If I has no subscription within [nl, nu],
we prune node n. Otherwise, suppose the smallest ID not
smaller than nl is nmin and nmax is the largest ID that no
larger than nu. We generate a sublist In of I by selecting
the subscriptions in [nmin, nmax]. Thus subscriptions under
node n that satisfy the spatial constraint must be in In.
Next we use In to do pruning for n’s children. Interactively
we can find a set of leaf nodes L. For each leaf node l ∈ L,
suppose its new list is Il. Each subscriptions in Il must
satisfy the textual constraint and the sum of number of sub-
scriptions in the inverted list of leaf nodes in L is smaller
than that of I (

∑
l∈L |Il| ≤ |I|). Therefore we only verify

subscriptions in Il for spatial constraint and this complexity
on new lists is smaller than that on the original list I.

For example, consider PT-Quadtree in Figure 4. For point
message mp in Figure 1, we can generate the inverted list
I = {s1, s4, s7, s9}. Then we traverse MBRTrie in Figure 2.
For the children of the root, we prune node 26 as I has no
subscription in range ([s11, s12]) of node 26. For node 8 with
range [s3, s9], it generate a sublist In = {s4, s7, s9}. We can
easily extend our method to support range messages.

5.3 Cost-based Model
Selecting an algorithm in the filter step: As discussing
in Section 5.1. We select the filter algorithm based on the
cost of CostFQ and CostFT as shown in Equation 1 and 3, re-

699

spectively. CostFT can be easily computed based on the MBR-
Trie structure and the message m. For CostFQ, we only need
to estimate candQ and other parameters can be gotten from
the PT-Quadtree structure. For a point message candQ = 1.
Next we discuss how to estimate candQ for a range message.
We can use the k-th level PT-Quadtree nodes to estimate
the number of candidates. For each PT-Quadtree node ni in
the k-th level, suppose it has |leaves(ni)| leaf descendants.
Obviously, the larger the spatial overlap ||ni ∩m.R|| is, the
more leaf nodes have overlap with m under node ni, where
||ni ∩m.R|| is the overlap area between node ni and m.R.
Thus we use the following equation to estimate the number,

candQ =
∑

ni
|leaves(ni)| × ||ni∩m.R||

||ni||
.

If CostFQ > CostFT , we use MBRTrie algorithm in both the
filter and verification steps; otherwise, in the filter step we
select PT-Quadtree algorithm. Next we discuss how to select
an algorithm for the verification step in this situation.

Selecting an algorithm in the verification step: Given
a trie node n in the i-th level and a list In, suppose n
matches the j-th token tj in message token set T . As dis-
cussed in Section 3.3, we estimate the complexity to find n’s
descendants with tokens in Tn = {tj+1, · · · , tN} as below.

CF = O
(

min
(
Li+1 × log |Tn|+ Li+2 ×

|Tn|
D
× log |Tn|,

logLi+1 × |Tn|+ logLi+2 ×
|Tn|
D
× |Tn|

))
.

For n’s leaf descendants, we verify subscriptions on their
lists with the complexity O(In). As we need to use the
range of n to probe In with complexity O(log |In|), the total
complexity of the list-pruning technique is

CL = CF + log |In|+ In. (5)

The time complexity to directly verify the list is

CV = O(|In| × Savg × log |Tn|), (6)

where Savg is the average token number of subscriptions.

Initially we consider the root node and the inverted list
gotten by PT-Quadtree. If CL > CV , we directly verify
the list; otherwise we traverse MBRTrie using list-pruning
technique. Iteratively, we always select a better verification
model for each accessed node.

For multiple inverted lists, CL = O(CF +
∑
I∈ΦI

(log |I|+
I)
)

and CV = O(
∑
I∈ΦI

|I| × Savg × log |Tn|), where ΦI is
the set of inverted lists generated by PT-Quadtree.

5.4 LFilter Algorithm
In this section, we devise an efficient location-based filter-

ing algorithm, LFilter, asillustrated in Figure 6.
In LFilter, we first construct an PT-Quadtree (line 2)

and an MBRTrie (line 3). If CostFQ > CostFT , LFilter calls
MBRTrie algorithm (line 5); otherwise it calls function
PT-Quadtree-Filter to generate the candidate nodes based
on PT-Quadtree (line 7). Then based on the inverted-list set
ΦI , LFilter calls function HybridPrune to filter the mes-
sage using a cost model (line 9).

For each trie node n, if n is a leaf node, we check whether
subscriptions on its inverted list satisfy spatial constraint
(line 3). Next we select a better verification strategy for the
inverted lists. If CL > CV , we directly verify whether the
subscriptions on the inverted lists on it satisfy both two con-
straints (line 6); otherwise we use list pruning technique on

Algorithm 3: LFilter (S,m)

Input: S: The subscription set; m: A message
Output: R : Answers of m
begin1

Build an PT-Quadtree with root rq;2

Build an MBRTrie with root rt ;3

if CostFQ > CostFT then4

R = MBRTrie (S, m) ;5

else6

PT-Quadtree-Filter (rq, m, CN) ;7

Compute inverted-list set ΦI of nodes in CN ;8

HybridPrune (rt, m, ΦI , R) ;9

end10

Function HybridPrune(n, Tn, ΦI , R)
Input: n: A trie node; m: A message

ΦI : A set of inverted lists; R: Answers of m
begin1

if n is a leaf node then2

R∪ = MBRTrie-Verify (m, {n});3

if CL > CV then4

for I ∈ ΦI do5

R∪ = PT-Quadtree-Verify (m, I);6

//verify the subscriptions on the list I7

else8

P = SelectPair (n, Tn, m) ;9

for each pair 〈c, Tc〉 ∈ P do10

Φ′I = ListPruning (c,ΦI); //∀I ∈ ΦI ,11

compute sublist of I in range [cl, cu], Ic

HybridPrune (c, Tc, Φ′I , R);12

end13

Figure 6: LFilter algorithm

n’s children (line 9), update the inverted lists using its chil-
dren’ ranges (line 11), and recursively check whether access
its children (line 12). Iteratively we can find the answers and
Theorem 3 guarantees the correctness and completeness.

Theorem 3. The LFilter algorithm satisfies complex-
ness and correctness.

6. EXPERIMENTAL STUDY
We compared with state-of-the-art location-aware pub-

lish/subscribe method Rt++-Tree [14] and location-aware
keyword search method IRTree [5]5.

We used two datasets. The first one was a real dataset
Twitter. We collected 60 million tweets and selected 10 mil-
lion tweets with region information as subscriptions and used
others as messages. Each subscription contained an MBR
and had 1-5 frequent tokens selected from tweets. The av-
erage token number of subscriptions was 3. The second
dataset was a synthetic dataset by combing Point of Inter-
ests (POIs) in USA and publications in DBLP. The USA
dataset contained 17 million POIs and DBLP had 1.5 mil-
lion publications. We generated MBRs from the POIs by
selecting a POI as the center and extending a random width

5We extended it to support our problem by checking
whether IR-tree nodes can be pruned with our filters.

700

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

ProbeTokenSet
ProbeTrie

CostBasedProbe

(a) Short Point Messages

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

ProbeTokenSet
ProbeTrie

CostBasedProbe

(b) Long Point Messages

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

ProbeTokenSet
ProbeTrie

CostBasedProbe

(c) Short Range Messages

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

ProbeTokenSet
ProbeTrie

CostBasedProbe

(d) Long Range Messages

Figure 7: Evaluating probing strategies in MBRTrie algorithm on the Twitter dataset (using idf order)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

MBRTrie
RT-Quadtree

LFilter

(a) Short Point Messages

 0

 10

 20

 30

 40

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

MBRTrie
RT-Quadtree

LFilter

(b) Long Point Messages

 0

 1

 2

 3

 4

 5

 6

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

MBRTrie
RT-Quadtree

LFilter

(c) Short Range Messages

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

MBRTrie
RT-Quadtree

LFilter

(d) Long Range Messages

Figure 8: Comparison of MBRTrie, PT-Quadtree and LFilter on the Twitter dataset

and height. Each subscription was generated by selecting an
MBR and 1-6 tokens from DBLP. Each message was gener-
ated by selecting an MBR and a publication.

To evaluate different algorithms, we generated four groups
of messages for both datasets by considering the number of
tokens and a point location or an region. For the length of
messages, the short and long messages contained 6-20 and
100-1000 tokens, respectively. And each group contained
10, 000 messages. We computed the average elapsed time.
Table 1 showed datasets and index sizes, where subscription
length represents the number of tokens in a subscription.
Due to space constraints, the results on USA dataset were
only shown in Section 6.3 to compare with existing methods.

All the algorithms were implemented in C++. All the
experiments were run on a machine running Ubuntu with a
3.0GHz CPU and 8 GB memory.

Table 1: Dataset statistics.
Twitter USA

Subscription number 10 million 10 million
Subscription length 1-5 1-6

Avg Subscription length 3 3.5
Subscription size 542 MB 654 MB
MBRTrie size 1.33 GB 1.45 GB

PT-Quadtree size 1.28 GB 1.37 GB

6.1 Evaluating MBRTrie Algorithm
We evaluated the MBRTrie algorithm by varying differ-

ent probe strategies: ProbeTokenSet, ProbeTrie, and Cost-
BasedProbe, as discussed in Section 3.3. Figure 7 shows
the results. We can see that CostBasedProbe achieved the
best performance as it adaptively selected a better probing
strategy. For upper-level nodes which had large numbers of
children, CostBasedProbe used messages to probe trie struc-
tures; when the nodes in the lower-level had small number,
it used the trie nodes to probe messages. For instance, in
Figure 7(d), for messages with 1000 tokens, ProbeTrie took
98 milliseconds, ProbeTokenSet took 72 milliseconds, and
CostBasedProbe only took 56 milliseconds.

6.2 Comparison of MBRTrie, PT-Quadtree, LFilter
We compared our three algorithms, MBRTrie, PT-Quadtree,

and LFilter by varying the message lengths. The results
are shown in Figure 8. LFilter significantly outperformed

other two algorithms as it used a cost-based model to se-
lect a better strategy to deal with any types of messages.
PT-Quadtree was better than MBRTrie for point messages,
since it only accessed one node in each level (see Figure 8(a)
and 8(b)). However, for range messages, MBRTrie achieved
higher performance than PT-Quadtree, as PT-Quadtree was
very expensive in the verification step (see Figures 8(c) and
8(d)). For example, in Figure 8(d), for messages with 1000
tokens, LFilter took 16 milliseconds and MBRTrie and PT-
Quadtree took more than 50 milliseconds.

6.3 Comparison with Existing Methods
We compared our LFilter with existing methods, Rt++-

Tree [14] and IRTree [5]. Figures 9 and 10 showed the results
on Twitter and USA respectively.

We can see that LFilter outperformed Rt++-Tree, which
in turn was better than IRTree. The reason is that the two
existing methods had low pruning power on the textual part.
For each R-tree node, if the node contained a token in the
message, their method had to visit its children. Thus it ac-
cessed huge number of unnecessary nodes. So IRTree and
Rt++-Tree were not efficient for the location-aware filtering
problem. Our algorithm always achieved the highest per-
formance for any types of messages utilizing its cost-based
model to select a better filtering strategy for both filtering
and verification. For example, in Figure 9(b), IRTree took
more than 15 milliseconds, Rt++-Tree decreased to 10 mil-
liseconds, and LFilter only took 2-4 milliseconds.

6.4 Scalability
Figure 11 showed the results of the scalability of our method

by varying the numbers of subscriptions. We can see that
our method scaled very well, and with increasing the num-
bers of subscriptions, the elapsed time increased almost lin-
early. For example, for messages with 600 tokens, the per-
formance was 6 milliseconds for 2 million subscriptions and
the elapsed time for 10 million subscriptions was only 16
milliseconds. This is because even if the number of sub-
scriptions increased, our index structures can pruned a large
number of unnecessary subscriptions.

7. CONCLUSION
In this paper we have studied the location-aware pub-

lish/subscribe problem. We propose two new index struc-

701

 0.1

 1

 10

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(a) Short Point Messages

 1

 10

 100

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(b) Long Point Messages

 0.1

 1

 10

 100

 6 8 10 12 14 16 18 20

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(c) Short Range Messages

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(d) Long Range Messages
Figure 9: Comparison with existing studies on the Twitter dataset

 0.1

 1

 10

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(a) Short Point Messages

 1

 10

 100

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(b) Long Point Messages

 0.1

 1

 10

 100

 6 8 10 12 14 16 18 20

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(c) Short Range Messages

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Message Lengths

IRTree
R

t++
-Tree

LFilter

(d) Long Range Messages
Figure 10: Comparison with existing studies on the USA dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Subscriptions (* million)

Message Length = 4
Message Length = 8

Message Length = 12

(a) Short Point Messages

 0

 0.4

 0.8

 1.2

 1.6

 2

 2 4 6 8 10

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Subscriptions (* million)

Message Length = 200
Message Length = 600

Message Length = 1000

(b) Long Point Messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Subscriptions (* million)

Message Length = 4
Message Length = 8

Message Length = 12

(c) Short Range Messages

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Numbers of Subscriptions (* million)

Message Length = 200
Message Length = 600

Message Length = 1000

(d) Long Range Messages
Figure 11: Scalability on the Twitter dataset

tures MBRTrie and PT-Quadtree to address this problem.
MBRTrie is efficient for the messages with a small number
of tokens and PT-Quadtree achieves high performance for
messages with small regions. We also develop a cost-based
model LFilter to select the best filtering strategy to achieve
high performance for any types of messages. Experimental
results show that our method achieves high performance and
significantly outperforms existing approaches.
Acknowledgement. This work was supported by 973 Program
of China (2015CB358700), and NSF of China (61272090, 61373024),
Beijing Higher Education Young Elite Teacher Project (YETP0105),
Tencent, SAP, Huawei, the “NExT Research Center” funded by MDA,
Singapore (WBS:R-252-300-001-490), and FDCT/106/2012/A3.

8. REFERENCES
[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving

reductions among convex optimization problems. J. Comput.
Syst. Sci., 21(1):136–153, 1980.

[2] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[3] L. Chen, G. Cong, and X. Cao. An efficient query indexing
mechanism for filtering geo-textual data. In SIGMOD
Conference, pages 749–760, 2013.

[4] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In SIGMOD
Conference, pages 277–288, 2006.

[5] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB, 2009.

[6] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe. In SIGMOD, pages 115–126, 2001.

[7] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, 2008.

[8] P. W. Foltz and S. T. Dumais. Personalized information
delivery: An analysis of information filtering methods.
Commun. ACM, 35(12):51–60, 1992.

[9] L. Guo, D. Zhang, G. Li, K. lee Tan, and Z. Bao.
Location-aware pub/sub system: When continuous moving
queries meet dynamic event streams. In SIGMOD, 2015.

[10] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing

spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems. In SSDBM, 2007.

[11] H. Hu, G. Li, Y. Liu, J. Feng, and K.-L. Tan. A location-aware
publish/subscribe framework for parameterized spatio-textual
subscriptions. In ICDE, 2015.

[12] P. Jin, H. Chen, S. Lin, X. Zhao, and L. Yue. Hybrid index
structures for temporal-textual web search. In APWeb, pages
271–277, 2011.

[13] G. Li, J. Feng, and J. Xu. DESKS: direction-aware spatial
keyword search. In ICDE, pages 474–485, 2012.

[14] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware
publish/subscribe. In KDD, pages 802–810, 2013.

[15] X. Liu, L. Chen, and C. Wan. LINQ: A framework for
location-aware indexing and query processing. IEEE Trans.
Knowl. Data Eng., 27(5):1288–1300, 2015.

[16] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k
nearest neighbor search. In SIGMOD Conference, pages
349–360, 2011.

[17] S. B. Roy and K. Chakrabarti. Location-aware type ahead
search on spatial databases: semantics and efficiency. In
SIGMOD, pages 361–372, 2011.

[18] H. Samet. Foundations of Multidimensional and Metric Data
Structure. 2006.

[19] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree:
Efficiently support continuous spatial-keyword queries over
stream. In ICDE 2015, pages 1107–1118, 2015.

[20] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient
continuously moving top-k spatial keyword query processing. In
ICDE, pages 541–552, 2011.

[21] T. W. Yan and H. Garcia-Molina. Index structures for
information filtering under the vector space model. In ICDE,
pages 337–347, 1994.

[22] T. W. Yan and H. Garcia-Molina. The sift information
dissemination system. ACM Trans. Database Syst.,
24(4):529–565, 1999.

[23] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate
string search in spatial databases. In ICDE, 2010.

[24] M. Yu, G. Li, T. Wang, J. Feng, and Z. Gong. Efficient filtering
algorithms for location-aware publish/subscribe. IEEE Trans.
Knowl. Data Eng., 27(4):950–963, 2015.

[25] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid
index structures for location-based web search. In CIKM, 2005.

702

 HistoryItem_V1
 TrimAndShift

 Range: From page 10 to page 10
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150818072432
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 7.2000
 0.0000

 Both
 10
 SubDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 1

 1

 HistoryList_V1
 qi2base

